

Unclassified

English - Or. English 26 January 2022

ENVIRONMENT DIRECTORATE CHEMICALS AND BIOTECHNOLOGY COMMITTEE

Cancels & replaces the same document of 18 January 2022

PFAS and Alternatives in Food Packaging (Paper and Paperboard): Hazard Profile

Series on Risk Management No. 69

JT03488681

OECD Environment, Health and Safety Publications Series on Risk Management No. 69

# PFAS and Alternatives in Food Packaging (Paper and Paperboard): Hazard Profile



A cooperative agreement among FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD

**Environment Directorate** ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Paris 2022

#### About the OECD

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 38 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. Most of the OECD's work is carried out by more than 200 specialised committees and working groups composed of member country delegates. Observers from several countries with special status at the OECD, and from interested international organisations, attend many of the OECD's workshops and other meetings. Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is organised into directorates and divisions.

The Environment, Health and Safety Division publishes free-of-charge documents in twelve different series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides; Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission Scenario Documents; Safety of Manufactured Nanomaterials; and Adverse Outcome Pathways. More information about the Environment, Health and Safety Programme and EHS publications is available on the OECD's World Wide Web site (www.oecd.org/chemicalsafety/).

This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organisations.

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The Participating Organisations are FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment.

This publication is available electronically, at no charge.

Also published in the Series on Risk Management link

For this and many other Environment, Health and Safety publications, consult the OECD's World Wide Web site <u>www.oecd.org/chemicalsafety/</u>

or contact:

OECD Environment Directorate, Environment, Health and Safety Division 2, rue André-Pascal 75775 Paris cedex 16 France

Fax: (33-1) 44 30 61 80

E-mail: ehscont@oecd.org

#### © OECD 2022

Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, RIGHTS@oecd.org, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France

OECD Environment, Health and Safety Publications

Acknowledgements: The OECD would like to acknowledge the drafting of a consultancy report by Risk and Policy Analysis, which formed the background information of this report. The report was prepared under the framework of the OECD/UNEP Global PFC Group who reviewed and input to the report. Voluntary contributions from Switzerland, Norway, the United Kingdom and the European Union supported the development of the report. The report is published under the responsibility of the OECD Chemicals and Biotechnology Committee.



The OECD Per- and Polyfluoroalkyl Substances (PFAS) project has been produced with the financial assistance of the European Union. The views expressed herein can in no way be taken to reflect the official opinion of the European Union.

## **Executive Summary**

As part of the collaborative work of the OECD/UNEP Global PFC Group, a report on "PFASs and alternatives in food packaging (paper and paperboard): Commercial availability and current uses" was published in 2020 and summarised the commercial availability and current uses of short-chain PFAS and non-fluorinated alternatives in paper and paperboard food packaging. The report highlighted that both groups of substances can meet the high grease and water repellence performance specifications required for common food and pet food packaging uses. The report also identified that for some applications, non-fluorinated alternatives have a performance advantage over short-chain PFAS, and that the major barrier to uptake of non-fluorinated alternatives is cost.

Given the technical suitability of some of the alternatives highlighted by the OECD (2020) report, it is important to also understand their hazard profiles. The likelihood of regrettable substitution could be high if the health and environmental hazards of these alternatives are not understood and communicated. This study aims to complement the 2020 report by compiling information on the hazard profile of the alternatives identified in terms of hazard classifications from authorities and industry and available assessments from authorities on persistence, bioaccumulation, environmental and health hazards.

This study demonstrates that the hazard profiles of the many of the alternatives to long-chain PFAS for paper and paperboard food packaging are not available. Out of the 58 alternatives examined, only ten alternatives have been classified by authorities and 26 by industry, while published assessments by authorities were available for just over half of the fluorinated alternatives and a significantly lower proportion of non-fluorinated alternatives. No classifications or hazard assessments were identified for 18 alternatives.

## Table of contents

| Executive Summary                                                                                          | .7 |
|------------------------------------------------------------------------------------------------------------|----|
| List of Abbreviations and Acronyms                                                                         | .9 |
| 1. Introduction1                                                                                           | 11 |
| 1.1. Background    1      1.2. Scope    1      1.3. Methodology    1                                       | 12 |
| 2. Report Findings                                                                                         | 18 |
| <ul> <li>2.1. Task 1 – Identification and review of GHS classifications</li></ul>                          | 18 |
| 3. Data Gaps and Limitations                                                                               | 20 |
| 4. Conclusions and Recommendations                                                                         | 22 |
| 5. References                                                                                              | 23 |
| Annex A. Substances Identified as Chemical or Material Alternatives to Long-Chain<br>PFAS                  |    |
| Fluorinated Alternatives<br>Non-fluorinated Alternatives                                                   |    |
| Annex B. Data Availability of Fluorinated and Non-fluorinated Alternatives                                 | 34 |
| Fluorinated Alternatives                                                                                   |    |
| Annex C. Hazard Classifications and Assessments of Chemical or Material<br>Alternatives to Long-chain PFAS | 38 |

#### **TABLES**

| Table 1.1. Publicly available classification databases accessed for Task 1 | 14 |
|----------------------------------------------------------------------------|----|
|                                                                            |    |
| Table 1.2. Authority websites and webpages accessed for Task 2             | 15 |
| Table 1.3. Authority websites and webpages accessed for Task 3             | 16 |
| Table 3.1. Level of data availability for each alternative                 | 21 |
|                                                                            |    |

## List of Abbreviations and Acronyms

| BAuA   | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (German Federal<br>Institute for Occupational Safety and Health)                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СЕРА   | Canadian Environmental Protection Act, 1999                                                                                                                           |
| CLP    | Classification, Labelling and Packaging (Regulation (EC) No 1272/2008)                                                                                                |
| CMR    | Carcinogenic, Mutagenic or Reprotoxic                                                                                                                                 |
| CoRAP  | Community Rolling Action Plan                                                                                                                                         |
| DSL    | Canadian Domestic Substances List                                                                                                                                     |
| ECCC   | Environment and Climate Change Canada                                                                                                                                 |
| ЕСНА   | European Chemicals Agency                                                                                                                                             |
| EEA    | European Environment Agency                                                                                                                                           |
| EFSA   | European Food Safety Authority                                                                                                                                        |
| EU     | European Union                                                                                                                                                        |
| GHS    | Globally Harmonized System of Classification and Labelling of<br>Chemicals                                                                                            |
| IARC   | International Agency for Research on Cancer                                                                                                                           |
| IFA    | Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung<br>(Institute for Occupational Safety and Health of the German Social<br>Accident Insurance) |
| METI   | Japanese Ministry of Economy, Trade and Industry                                                                                                                      |
| NICNAS | Australian National Industrial Chemicals Notification and Assessment<br>Scheme                                                                                        |
| NITE   | Japanese National Institute of Technology and Evaluation                                                                                                              |
| OECD   | Organisation for Economic Co-operation and Development                                                                                                                |
| OSHA   | US Occupational Safety and Health Administration                                                                                                                      |
| РВТ    | Persistent, Bioaccumulative and Toxic                                                                                                                                 |
| PFAS   | Per- and Polyfluoroalkyl Substances                                                                                                                                   |
|        |                                                                                                                                                                       |

| PFC    | Perfluorinated Chemicals                                                                                          |
|--------|-------------------------------------------------------------------------------------------------------------------|
| REACH  | Registration, Evaluation, Authorisation and Restriction of Chemicals (Regulation (EC) No 1907/2006)               |
| RIVM   | Rijksinstituut voor Volksgezondheid en Milieu (Dutch National Institute<br>for Public Health and the Environment) |
| RPA    | Risk & Policy Analysts                                                                                            |
| SDS    | Safety Data Sheet                                                                                                 |
| UNEP   | United Nations Environment Programme                                                                              |
| USA    | United States of America                                                                                          |
| US EPA | United States Environmental Protection Agency                                                                     |
| US FDA | United States Food & Drug Administration                                                                          |

#### **1. Introduction**

#### 1.1. Background

In 2012, the OECD/UNEP Global Perfluorinated Chemicals (PFC) Group was established in response to the International Conference on Chemicals Management (Resolution II/5), which invited intergovernmental organisations, governments and other stakeholders to develop regulatory approaches to reduce the concentration and emissions of perfluorinated chemicals of concern in products, and to work toward global elimination where appropriate and technically feasible (OECD, 2020). The objectives of the Group are to facilitate the exchange of information on per- and polyfluoroalkyl substances (PFAS) and to support the global transition to safer alternatives.

As part of the collaborative work of the OECD/UNEP Global PFC Group, a report on "PFASs and alternatives in food packaging (paper and paperboard): Commercial availability and current uses" was published (OECD, 2020) and summarised the commercial availability and current uses of short-chain PFAS and non-fluorinated alternatives in paper and paperboard food packaging. The report highlighted that both groups of substances can meet the high grease and water repellence performance specifications required for common food and pet food packaging uses. The report also identified that for some applications, nonfluorinated alternatives have a performance advantage over short-chain PFAS, and that the major barrier to uptake of non-fluorinated alternatives is cost and also time and effort to create replacements.

Given the technical suitability of some of the alternatives highlighted by the OECD (2020) report, it is important to also understand their hazard profiles. The likelihood of regrettable substitution could be high if the health and environmental hazards of these alternatives are not understood and communicated. This study aims to complement the 2020 report by compiling information on the hazard profile of the alternatives identified. To achieve this aim, this study focused on collecting information on the following aspects for each identified alternative in Annex A:

- Task 1 GHS<sup>1</sup> classifications, including:
  - Authority classifications (1<sup>st</sup> Tier)<sup>2</sup>
  - Non-authority/industry classifications (2<sup>nd</sup> Tier)
- Task 2 Outcomes of persistence and bioaccumulation assessments published by authorities
- Task 3 Outcomes of environmental and human health hazard assessments published by authorities.

<sup>&</sup>lt;sup>1</sup> GHS stands for Globally Harmonized System of Classification and Labelling of Chemicals. The GHS system addresses the classification of chemicals by separating them into types of hazard and proposes harmonised hazard communication elements, including labels and safety data sheets (SDS).

 $<sup>^2</sup>$  Authority classifications refer to classifications made by the competent authorities responsible for enforcing GHS or its equivalent.

#### 1.2. Scope

The scope of the OECD (2020) report included both short-chain PFAS and non-fluorinated alternatives used in food packaging (paper and paperboard). These chemical and material alternatives to long-chain PFAS are the focus of this study and are listed in Annex A.

Short-chain PFAS are distinguished from long-chain PFAS using the OECD's definition, which defines long-chain PFAS as:

- Perfluorocarboxylic acids (PFCAs) and their precursors with carbon chain lengths ≥ C7 (including perfluorooctanoic acid (PFOA)); and
- Perfluoroalkane sulfonic acids (PFSAs) and their precursors with carbon chain lengths ≥ C6 (including perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonate (PFOS)).

Short-chain PFAS<sup>3</sup> are defined as:

- PFCAs with carbon chain lengths < C7; and
- PFSAs with carbon chain lengths < C6.

The substances listed in Annex A were compiled in the OECD (2020) report with a focus on alternatives for paper and paperboard food packaging used for: fast food wrapping; food storage/shelf-life; food transport; and paper and paperboard requiring release properties, such as from baking moulds (i.e. for paper and board in contact with food); and pet food packaging. Alternatives used solely in items for food preparation and consumption (e.g. kitchenware, plates, utensils etc.) were considered out of scope.

In total, there are 45 fluorinated alternatives (42 of which have CAS numbers) and 13 non-fluorinated alternatives (5 of which have CAS numbers) within the scope of this study (see Annex A).

The scope of the Tier 1 classification search of Task 1 was limited to GHS classifications from countries with publicly available GHS classification databases. An example of an excluded country is the US, where GHS classifications are made by industry and the competent authority (US OSHA) does not maintain a database of classifications. However, the literature search for industry classifications was not limited in geographical scope. The scope of Tasks 2 and 3 included assessments published by authorities, while assessments published in scientific journals were out of scope of this study. The literature review for Tasks 2 and 3 was limited to assessments published in the English language, however countries that are part of the Global PFC Group were requested to supplement the desk review findings. As the focus of this study is on the collection of hazard properties, assessments reporting risk values, such as TDIs, health advisory values, cancer risk values, were excluded.

<sup>&</sup>lt;sup>3</sup> It should be noted that the distinction of "long-chain" and "short-chain" PFAS based on chain length is only applicable to PFCAs, PFSAs and their precursors.

#### 1.3. Methodology

#### 1.3.1. Task 1 – Identification and review of GHS classifications

The United Nations' Globally Harmonised System of Classification and Labelling of Chemicals (GHS) provides a basis for globally uniform information on physical, health, safety and environment aspects of hazardous chemical substances and mixtures. The first edition of GHS was published in 2003 and has been updated with a new edition every two years, in light of experience gained from its implementation. The eighth edition was published in 2019 and is the most recent revised edition<sup>4</sup>.

The GHS system addresses the classification of chemicals by separating them into types of hazard and proposes harmonised hazard communication elements, including labels and safety data sheets (SDS). Its purpose is to ensure that information on physical hazards and toxicity of chemicals is available during handling, transport and use to enhance the protection of human health and the environment. The GHS also provides a basis for harmonisation of rules and regulations on chemicals at national, regional, and global levels in order to assist in facilitating trade.

The identification of classifications was limited to authority classifications and industry classifications. For authority classifications, the intent was to identify where an authority had examined the available information and made a classification conclusion. As in a number of countries, GHS implementation is the legal responsibility of industry, available industry classifications were also included. Other potential sources of classifications were not considered within the scope of the report (e.g. in the scientific literature, non-governmental organisations) as additional verification of these classifications would be required.

#### Authority classifications

The collection of authority classifications (1st Tier GHS classifications) primarily involved reviewing the main national and regional legislation implementing GHS and searching their associated GHS classification inventories and databases. The search was limited to those countries and regions with publicly accessible classification inventories and databases. These are listed in Table 1.1 below.

<sup>&</sup>lt;sup>4</sup> https://unece.org/ghs-rev8-2019

| Country /<br>Region | Inventory / Database                                                                                                                                                            | Link                                                                                                                                                                                                            |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Australia           | Hazardous Chemical Information<br>System (HCIS)                                                                                                                                 | http://hcis.safeworkaustralia.gov.au/Hazardous<br>Chemical                                                                                                                                                      |
| Canada              | Workplace Hazardous Materials<br>Information System (WHMIS)                                                                                                                     | https://www.canada.ca/en/health-<br>canada/services/environmental-workplace-<br>health/occupational-health-safety/workplace-<br>hazardous-materials-information-<br>system/hazardous-substance-assessments.html |
|                     | Quebec Provincial Committee on<br>Standards, Equity, Health and<br>Safety at Work (Commission des<br>normes, de l'équité, de la santé et de<br>la sécurité du travail – CNESST) | https://reptox.cnesst.gouv.qc.ca/Pages/recherc<br>he-produit.aspx                                                                                                                                               |
| China               | NRCC National Internet Service<br>Platform for Hazardous Chemicals                                                                                                              | http://hxp.nrcc.com.cn/hc_safe_info_search.ht<br>ml                                                                                                                                                             |
| Chinese Taipei      | GHS Classification Reference List                                                                                                                                               | https://ghs.osha.gov.tw/CHT/intro/AnnounceD<br>ata4Detail.aspx?id=282                                                                                                                                           |
| European Union      | Classification and Labelling (C&L)<br>Inventory                                                                                                                                 | https://echa.europa.eu/information-on-<br>chemicals/cl-inventory-database                                                                                                                                       |
| Japan               | National Institute of<br>Technology and Evaluation<br>(NITE) classifications                                                                                                    | https://www.nite.go.jp/chem/english/ghs/ghs_i<br>ndex.html                                                                                                                                                      |
| Malaysia            | Chemical Information<br>Management System (CIMS)                                                                                                                                | https://cims.dosh.gov.my/                                                                                                                                                                                       |
| New Zealand         | Chemical Classification and<br>Information Database (CCID)                                                                                                                      | https://www.epa.govt.nz/database-<br>search/chemical-classification-and-<br>information-database-ccid/                                                                                                          |
| South Korea         | National Chemicals<br>Information System (NCIS)                                                                                                                                 | https://ncis.nier.go.kr/en/main.do                                                                                                                                                                              |
| Thailand            | GHS Classification List                                                                                                                                                         | https://ghs.diw.go.th/knowledge.html                                                                                                                                                                            |

| Table 1.1. Publicly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | available | classification | databases | accessed for | Task 1  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------|--------------|---------|
| <b>1</b> abit $1$ . $1$ a $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ | available | classification | uatabasts | accessed for | T ask T |

In addition to the information sources in Table 1.1., the GESTIS Substance Database<sup>5</sup> was searched. The GESTIS Substance Database contains information for the safe handling of hazardous substances and other chemical substances at work and is maintained by the Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA, Institute for Occupational Safety and Health of the German Social Accident Insurance).

#### Non-Authority / Industry Classifications

To identify industry classifications (2<sup>nd</sup> Tier GHS classifications), an internet search using Google was performed to identify published SDSs, from which GHS classification information was extracted. The search was performed using the CAS numbers of each alternative listed in Annex A in combination with each of the following search strings: "*SDS*", "*safety data sheet*" and "*material safety data sheet*". For substances without CAS numbers, searches were performed using the substance name in combination with the above search strings.

Under the EU Classification, Labelling and Packaging (CLP) Regulation ((EC) No 1272/2008), manufacturers and importers who place any quantity of a hazardous substance (i.e. a substance meeting any of the physical, health and environmental hazards under GHS) on the market are obliged to notify the classification and

<sup>&</sup>lt;sup>5</sup> https://www.dguv.de/ifa/gestis/index-2.jsp

labelling of the substance to ECHA. The notification obligation also applies to manufacturers and importers placing on the market a substance that is subject to registration under REACH (i.e. in quantities  $\geq 1$  tonne/year), regardless of whether the substance is hazardous or not. Notifications made by manufacturers and importers can differ for the same substance, due to different impurity profiles, interpretation differences in the process of evaluation of available data, or in the application of the classification rules for CLP. The CLP Regulation encourages agreement between notifications made by registrants and non-registrants. The most common notified classification will be reported for this Task, and in cases where there are two classifications with an equal number of notifications, both will be reported.

#### 1.3.2. Task 2 – Review of Persistence and Bioaccumulation Assessments

To collect information on the persistence and bioaccumulation of the alternatives listed in Annex A, assessments published by national, regional, and international authorities were identified. Assessments published in scientific journals or by other third-parties were out of scope of this study as the aim was to identify authoritative assessment conclusions for these substances. To identify published assessments, the websites and webpages of the authorities listed in Table 1.2 were reviewed and searched using the CAS numbers of each alternative. Searches were conducted using CAS numbers as this identifier is unique to each substance, whereas substance names can be numerous and vary in spelling and structure across different regions. For substances with no CAS number, the substance name was used to perform the search.

| Organisation / Authority                                     | Website / Webpage                                                                                                                                 |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Australian Industrial Chemicals                              | https://www.industrialchemicals.gov.au/chemical-                                                                                                  |
| Introduction Scheme (AICIS)                                  | information/search-assessments                                                                                                                    |
| Food Standards Australia New Zealand (FSANZ)                 | https://www.foodstandards.gov.au/code/Pages/default.aspx                                                                                          |
| Environment and Climate Change<br>Canada (ECCC)              | https://www.canada.ca/en/environment-climate-<br>change.html                                                                                      |
|                                                              | https://www.canada.ca/en/environment-climate-<br>change/services/canadian-environmental-protection-act-<br>registry/substances-list/domestic.html |
|                                                              | https://pollution-waste.canada.ca/substances-<br>search/Substance?lang=en                                                                         |
| European Chemicals Agency (ECHA)                             | https://echa.europa.eu/                                                                                                                           |
| ECHA PBT Assessment List                                     | https://echa.europa.eu/pbt                                                                                                                        |
| European Food Safety Agency (EFSA)                           | https://www.efsa.europa.eu/                                                                                                                       |
| European Public Health Association (EUPHA)                   | https://eupha.org/                                                                                                                                |
| Japanese Ministry of Economy, Trade<br>and Industry (METI)   | https://www.meti.go.jp/english/                                                                                                                   |
| New Zealand Environmental Protection<br>Administration (EPA) | https://www.epa.govt.nz/industry-areas/hazardous-<br>substances/                                                                                  |
| US Environmental Protection Agency<br>(US EPA)               | https://www.epa.gov/                                                                                                                              |
| US Food & Drug Administration (US FDA)                       | https://www.fda.gov/                                                                                                                              |
| Stockholm Convention                                         | http://www.pops.int/                                                                                                                              |

#### Table 1.2. Authority websites and webpages accessed for Task 2

In addition to the information sources in Table 1.2., the OECD's eChemPortal Database<sup>6</sup> was searched and an internet search using Google was performed using the CAS numbers, or substance name, of each alternative listed in Annex A in combination with each of the following search strings: "assessment", "persistence assessment" and "bioaccumulation assessment".

# 1.3.3. Task 3 – Review of Human Health and Environmental Hazard Assessments

To collect information on the human health and environmental hazards of the alternatives listed in Annex A, assessments published by national, regional, and international authorities were identified. Assessments published in scientific journals or by other third-parties were out of scope of this study as the aim was to identify authoritative assessment conclusions for these substances. To identify published assessments, the websites and webpages of the authorities listed in Table 1.3 were reviewed and searched using the CAS numbers of each alternative. Searches were conducted using CAS numbers as this identifier is unique to each substance, whereas substance names can be numerous and vary in spelling and structure across different regions. For substances with no CAS number, the substance name was used to perform the search.

|                                   | W. h the (W. h                                           |
|-----------------------------------|----------------------------------------------------------|
| Organisation / Authority          | Website / Webpage                                        |
| Australian Industrial Chemicals   | https://www.industrialchemicals.gov.au/chemical-         |
| Introduction Scheme (AICIS)       | information/search-assessments                           |
| Food Standards Australia New      | https://www.foodstandards.gov.au/code/Pages/default.aspx |
| Zealand (FSANZ)                   |                                                          |
| Environment and Climate Change    | https://www.canada.ca/en/environment-climate-            |
| Canada (ECCC)                     | change.html                                              |
| Canadian Environmental            | https://www.canada.ca/en/environment-climate-            |
| Protection Act (CEPA) – List of   | change/services/canadian-environmental-protection-act-   |
| Substances                        | registry/substances-list.html                            |
| European Chemicals Agency         | https://echa.europa.eu/                                  |
| (ECHA)                            |                                                          |
| European Food Safety Agency       | https://www.efsa.europa.eu/                              |
| (EFSA)                            |                                                          |
| European Public Health            | https://eupha.org/                                       |
| Association (EUPHA)               |                                                          |
| Japanese Ministry of Economy,     | https://www.meti.go.jp/english/                          |
| Trade and Industry (METI)         |                                                          |
| New Zealand Environmental         | https://www.epa.govt.nz/industry-areas/hazardous-        |
| Protection Administration (EPA)   | substances/                                              |
| US Environmental Protection       | https://www.epa.gov/                                     |
| Agency (EPA)                      |                                                          |
| US Food & Drug Administration     | https://www.fda.gov/                                     |
| (US FDA)                          |                                                          |
| International Agency for Research | https://monographs.iarc.fr/                              |
| on Cancer (IARC) Monographs       |                                                          |
| United Nations Environment        | https://www.unep.org/                                    |
| Agency (UNEP)                     |                                                          |

#### Table 1.3. Authority websites and webpages accessed for Task 3

<sup>&</sup>lt;sup>6</sup> https://www.echemportal.org/echemportal/

#### ENV/CBC/MONO(2022)2 | 17

In addition to the information sources in Table 1.3., the OECD's eChemPortal Database was searched and an internet search using Google was performed using the CAS numbers, of substance names, of each alternative listed in Annex A in combination with each of the following search strings: "assessment", "hazard assessment", "health assessment" and "environment assessment".

#### 2. Report Findings

Annex C presents the available authority and industry GHS classifications of each alternative listed in Annex A. Industry classifications are presented when they differ from the authority classifications of the country/region in which the company resides, or when that authority classification was not available. Where multiple industry classifications were identified for a single country or region, these were amalgamated to present a worst-case classification. In addition to industry classifications obtained via SDS, the most frequently notified classifications under the EU CLP Regulation are provided.

Annex C also presents the outcomes of published persistence and bioaccumulation assessments and human health and environmental hazard assessments conducted by authorities. The outcomes of published assessments are displayed for the individual endpoints included in each assessment.

#### 2.1. Task 1 – Identification and review of GHS classifications

For the 45 fluorinated alternatives in scope of this project, classification information was available for 21 alternatives, while no authority or industry classification data could be found for 24 fluorinated alternatives. Authority classifications were available for nine fluorinated alternatives and industry classifications were available for 20 alternatives (see Annex B).

For the 13 non-fluorinated alternatives in scope of this project, classification information was available for nine alternatives, while no authority or industry classification data could be found for four non-fluorinated alternatives. Authority classifications were available for one alternative and industry classifications were found for nine alternatives (see Annex B).

#### 2.2. Task 2 – Review of Persistence and Bioaccumulation Assessments

Persistence and bioaccumulation assessments by authorities were available for 24 of the 45 fluorinated alternatives, and two of the 13 non-fluorinated alternatives (see Annex B). Of the 24 fluorinated alternatives for which data on persistence and bioaccumulation was available, 15 were identified as being persistent or very persistent and 5 were identified as being bioaccumulative. 7 substances were deemed to be non-persistent and 14 were deemed to be non-bioaccumulative. There was insufficient or inconclusive data to assess persistence for 3 substances and bioaccumulation for 4 substances. For another 3 substances, findings were contradictory in the assessment of bioaccumulation.

# **2.3.** Task 3 – Review of Human Health and Environmental Hazard Assessments

Human health hazard assessments were available for 20 of the 45 fluorinated alternatives, and for one of the 13 non-fluorinated alternatives. Environmental hazard assessments were available for 24 of the 45 fluorinated alternatives, and for two of the 13 non-fluorinated alternatives (see Annex B).

The human health and environmental hazard types identified in this study included:

• Acute toxicity;

- Sub-chronic and chronic toxicity;
- Corrosion / Irritation;
- Sensitisation;
- Repeated dose toxicity;
- Carcinogenicity;
- Genotoxicity;
- Reproductive and developmental toxicity;
- Aquatic toxicity; and
- Terrestrial toxicity.

For the majority of alternatives assessed in this study for which human health hazard and environmental hazard data was available, there was generally a lack of adverse effects observed, however, the availability of information for each substance should be individually considered to draw any conclusions.

#### **3. Data Gaps and Limitations**

The findings of this study have demonstrated that the hazard profiles of the majority of alternatives to long-chain PFAS for paper and paperboard food packaging are poorly understood and/or not publicly available. Efforts to develop inventories of PFAS that are manufactured and used global have proved difficult (Wang et al., 2014) and a large majority of PFAS have not been registered or notified under chemical legislation such as REACH in the EU. Of the 58 alternatives included in the scope of this study, only nine have full registrations under REACH (CAS 2144-53-8; 17527-29-6; 121-44-8; 1314-56-3; 4767-03-7; 4098-71-9; 7473-98-5; 2855-27-8; 56773-42-3), indicating that alternatives to long-chain PFAS are likely not widely used across Europe, or are used in small quantities. Outside of Europe, alternatives may be more widely used as 24 alternatives are on Canada's DSL and 27 are listed on the US TSCA Inventory.

Only ten alternatives have been classified by authorities and 29 by industry, while published assessments by authorities were available for just over half of the fluorinated alternatives and a significantly lower proportion of non-fluorinated alternatives. No classification or hazard assessments were identified for 18 alternatives (see Annex B and Table 3-1 below).

A study limitation was the lack of available CAS numbers for some alternatives. The literature searches were led primarily by CAS number as these are unique to each chemical substance, whereas there are inconsistencies in the preference, structure and spelling of chemical substance names across different regions. Therefore, for alternatives without available CAS numbers, there is a possibility of missing hazard information. However, the vast majority of alternatives have been assigned CAS numbers, and substance names were used as search terms where CAS numbers were not available, so it is not expected that a substantial amount of critical information was missed.

It is also uncertain whether there is classification information held by industry that is not publicly accessible. In addition, due to the scope of the study, the general scientific literature was not considered.

Despite the limitations of this study, the findings are considered to accurately represent the level of currently available evidence on the hazard profile of alternatives to long-chain PFAS obtainable from authority or industry classifications or from assessments by authorities.

#### ENV/CBC/MONO(2022)2 | 21

|                             |                     | Authority<br>Classifications | Industry<br>Classifications | HH Hazard<br>Assessments | Environmental<br>Hazard<br>Assessments | Persistence &<br>Bioaccumulation<br>Assessments |
|-----------------------------|---------------------|------------------------------|-----------------------------|--------------------------|----------------------------------------|-------------------------------------------------|
| Fluorinated<br>alternatives | Data<br>available   | 9                            | 20                          | 20                       | 24                                     | 24                                              |
|                             | Data<br>unavailable | 36                           | 25                          | 25                       | 21                                     | 21                                              |
| Non-<br>fluorinated         | Data<br>available   | 1                            | 9                           | 1                        | 2                                      | 2                                               |
| alternatives                | Data<br>unavailable | 12                           | 4                           | 12                       | 11                                     | 11                                              |
| Total                       | Data<br>available   | 10                           | 29                          | 21                       | 26                                     | 26                                              |
|                             | Data<br>unavailable | 48                           | 29                          | 37                       | 32                                     | 32                                              |

## Table 3.1. Level of data availability for each alternative

#### 4. Conclusions and Recommendations

This study examined the availability of classifications and assessment by authorities of the persistence, bioaccumulation and human health and environment hazards posed by 58 alternatives to long-chain PFAS in paper and paperboard food packaging. Based on the data available, in general, the human health hazard data for the alternatives included in this study show a lack of adverse effects, and the same is true for aquatic and terrestrial toxicity. However, there are potential human health and environmental risks for certain alternatives, and in many cases current evidence is insufficient or too inconsistent to draw solid conclusions. Therefore each substance should be considered individually, within the context of their data availability and concordance. The major concern surrounding fluorinated alternatives is persistence, as the majority of the fluorinated alternatives that have been assessed for persistence, are considered to be persistent or very persistent. This is not unexpected given the persistent nature of fluorinated substances.

This study identified no classification or authoritative hazard assessments of any kind for 18 alternatives. Therefore, significant data gaps exist in terms of classification and assessment. As this study only focused on where a classification conclusion or authoritative hazard assessment had been conducted, it is uncertain as to the level and nature of the individual studies available on these alternatives in the public domain and how much unpublished information is in the private domain. However further assessment of the potential health and environmental effects is required, given the lack of classification/assessment highlighted by this study. As already recommended by the OECD (2020), any scientifically robust information on intentionally used fluorinated and non-fluorinated PFAS alternatives in food packaging should be shared publicly. In order to support the shift towards safer substitutes, the elaboration of classification conclusions and assessment of the available persistence, bioaccumulation and hazard information on alternatives and their dissemination is needed. When authorities elaborate these, they can be shared with other stakeholders, industry and authorities in order to reduce duplication of work and to leverage the analysis that has been conducted. Guidance is available from the OECD on Key Considerations for the Identification and Selection of Safer Chemical Alternatives (OECD, 2021). Screening approaches could also be employed using high-throughput methods and in vitro models. These could be paired with grouping approaches to create efficiencies in the generation of information to support assessment.

Improving the understanding of PFAS alternatives should be a priority, as the use of PFAS in paper and paperboard packaging is open and dispersive, with a large number of consumers coming into contact with PFAS-containing products. Various studies have detected PFAS in paper food packaging (Moreta and Tena, 2013; Poothong et al., 2012; Surma et al., 2015) and it has been identified as requiring prioritisation for reducing and eliminating the use of PFAS (Glüge et al., 2020). However, the substitution has to be an informed choice based on adequate knowledge for the alternative.

#### **5. References**

Alfa-Aesar. (2012). Safety Data Sheet: Perfluoro-1-idohexane. https://www.chemblink.com/MSDS/MSDSFiles/355-43-1\_Alfa-Aesar.pdf Alfa-Aesar. (2021). Safety Data Sheet: Fluorolink® E10-H. https://www.alfa.com/en/catalog/sds/H66374/ Apollo. (2014a). Safety Data Sheet: N-ETHYL-N-(2-HYDROXYETHYL)PERFLUOROOCTYLSULPHONAMIDE. https://www.chemblink.com/MSDS/MSDSFiles/1691-99-2 Apollo.pdf Apollo. (2014b). Safety Data Sheet: N-ETHYL PERFLUOROOCTYLSULPHONAMIDE. https://www.chemblink.com/MSDS/MSDSFiles/4151-50-2\_Apollo.pdf Apollo. (2015). Safety Data Sheet: 2-HYDROXY-2-METHYLPROPIOPHENONE. https://www.chemblink.com/MSDS/MSDSFiles/7473-98-5 Apollo.pdf Apollo. (2016). Safety Data Sheet: TETRAETHYLAMMONIUM PERFLUOROOCTANESULPHONATE. https://www.chemblink.com/MSDS/MSDSFiles/56773-42-3\_Apollo.pdf Apollo. (2018a). Safety Data Sheet: POTASSIUM NONAFLUOROBUTANE-1-SULPHONATE. https://www.chemblink.com/MSDS/MSDSFiles/29420-49-3 Apollo.pdf Apollo. (2018b). Safety Data Sheet: 2-(N-ETHYLPERFLUOROOCTANESULPHAMIDO)ETHYL ACRYLATE. https://www.chemblink.com/MSDS/MSDSFiles/423-82-5 Apollo.pdf BAuA. (2019). Substance Evaluation Conclusion and Evaluation Report for 2-[methyl[(nonafluorobutyl) sulphonyl]amino]ethyl acrylate (Issue 266). Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., De Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A. and van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environmental Assessment and Management, 7(4), 513–541. CalEPA. (2020). Product - Chemical Profile for Food Packaging Containing Perfluoroalkyl or Polyfluoroalkyl Substances: Discussion Draft (Issue July). Cellucomp. (2018). Material Safety Data Sheet: Curran. https://www.cellucomp.com/uploads/tinymce/MSDS%20-%20Curran.pdf ECCC. (2006). Detailed categorisation results of the Domestic Substances List. https://open.canada.ca/data/en/dataset/1d946396-cf9a-4fa1-8942-4541063bfba4 ECCC. (2015). Final Regulatory Action - 2-Propen-1-ol, reaction products with pentafluoroiodoethane tetrafluoroethylene telomer, dehydroiodinated, reaction products with epichlorohydrin and triethylenetetramine. http://archive.pic.int/view\_displayFRA.php?id=1352&back=javascript: history.go(-1 ECCC. (2021). New substances: risk assessment summary, new substances notification 19513. https://www.canada.ca/en/environment-climate-change/services/managingpollution/evaluating-new-substances/chemicals-polymers/risk-assessment-summaries/newsubstances-notification-19513.html#toc5 Combi-Blocks. (2019). Safety Data Sheet: Perfluorohexyl iodide. http://www.combiblocks.com/msds/OR-0287.pdf Danish EPA. (2001). Environment Report 636 Dow. (2019). Safety Data Sheet: SYLGARD<sup>™</sup>184 Silicone Elastomer Base. https://www.wpiinc.com/media/wysiwyg/pdf/SDS/sylgard184-base.pdf ECCC and Health Canada. (2019). Screening Assessment - Cyclohexane, 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethyl-(Isophorone diisocyanate). ECHA. (2019). CLP Report - Proposal for Harmonised Classification and Labelling for Triethylamine. ECHA. (2020a). REACH registered factsheets - Cyclohexane-1,2,4-triyltris(ethylene). https://echa.europa.eu/de/registration-dossier/-/registered-dossier/23941

PFAS AND ALTERNATIVES IN FOOD PACKAGING (PAPER AND PAPERBOARD): HAZARD PROFILE

- ECHA. (2020b). REACH registered substance factsheet 2-hydroxy-2-methylpropiophenone. https://echa.europa.eu/de/registration-dossier/-/registered-dossier/11211
- ECHA. (2020c). REACH registered substance factsheet 2,2-bis(hydroxymethyl)propionic acid. https://echa.europa.eu/de/registration-dossier/-/registered-dossier/13154/2/3
- ECHA. (2020d). REACH registered substance factsheet 3,3,4,4,5,5,6,6,7,7,8,8,8tridecafluorooctyl acrylate. https://echa.europa.eu/de/registration-dossier/-/registereddossier/15839
- ECHA. (2020e). REACH registered substance factsheet Potassium 1,1,2,2,3,3,4,4,4nonafluorobutane-1-sulphonate. https://echa.europa.eu/de/registration-dossier/-/registereddossier/22432
- ECHA. (2020f). REACH registered substance factsheet Tetraethylammonium heptadecafluorooctanesulphonate. https://echa.europa.eu/de/registration-dossier/-/registereddossier/10980/2/3
- ECHA. (2020g). REACH registered substance factsheet Triethylamine.
- ECHA. (2020h). REACH registered substance factsheets 3-isocyanatomethyl-3,5,5trimethylcyclohexyl isocyanate. https://echa.europa.eu/de/registration-dossier/-/registereddossier/14516
- ECHA. (2020i). REACH registered substance factsheets 3,3,4,4,5,5,6,6,7,7,8,8,8tridecafluorooctyl methacrylate. https://echa.europa.eu/de/registration-dossier/-/registereddossier/14308
- ECHA. (2020j). C&L Inventory. https://echa.europa.eu/information-on-chemicals/cl-inventorydatabase
- EEA. (2019). Emerging chemical risks in Europe PFAS. https://doi.org/10.18356/88b2ed9d-en
- Electrolube. (2017a). Safety Data Sheet: Silicone Oil. http://www.farnell.com/datasheets/2615507.pdf
- Electrolube. (2017b). Safety Data Sheet: Silicone Resin SC2003, Part A. https://docs.rsonline.com/9bfa/0900766b8113a611.pdf
- Environment Agency. (2010). Environmental prioritisation of low production volume substances under REACH: PBT screening.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment\_data/file/291 245/scho0210brvh-e-e.pdf

- Environment Canada. (2006). Ecological Screening Assessment Report on Perfluorooctane Sulfonate, Its Salts and Its Precursors that Contain the C8F17SO2 or C8F17SO3, or C8F17SO2N Moiety. http://www.ec.gc.ca/lcpe-cepa/09F567A7-B1EE-1FEE-73DB-8AE6C1EB7658/ecological\_sar\_pfos\_eng.pdf
- European Commission. (2017). Study for the strategy for a non-toxic environment of the 7th EAP (Issue August). https://ec.europa.eu/environment/chemicals/non-toxic/pdf/Sub-study a substitution grouping NTE final.pdf
- Fila Industria Chimica. (2017). Safety Data Sheet: FILA W68. https://filasaudi.com/wpcontent/uploads/2020/06/W68\_13-UK.pdf
- Fisher Scientific. (2014). Safety Data Sheet: Cellulose, Lab Grade. https://betastatic.fishersci.com/content/dam/fishersci/en\_US/documents/programs/education/regulatorydocuments/sds/chemicals/chemicals-c/S25241A.pdf
- Glüge, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X. and Wang, Z. (2020). An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts.
- International Paper. (2017). Safety Data Sheet: Kraft Pulp (Bleached). <u>http://www.internationalpaper.com/docs/default-source/english/sustainability/product-safety-data-sheets/kraft-pulp-bleached.pdf?sfvrsn=a05ea133\_4</u>
- LGC. (2018). Safety Data Sheet: Sulfluramid. https://assets.lgcstandards.com/sysmaster%2Fpdfs%2Fh49%2Fh5e%2F10157615185950%2FSDS\_DRE-C17004000\_ST-WB-MSDS-2789939-1-1-1.PDF
- LGC. (2020). Safety Data Sheet: N-Ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide. https://assets.lgcstandards.com/sysmaster%2Fpdfs%2Fh80%2Fhf5%2F10276652974110%2FSDS\_DRE-C13342360\_ST-WB-MSDS-3202227-1-1-1.PDF

Merck. (2019). Safety Data Sheet: Phosphorus pentoxide. https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=431419&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.co m%2Fcatalog%2Fsearch%3Fterm%3D1314-56-

3%26interface%3DCAS%2520No.%26N%3D0%2B%26mode%3Dpartialmax%26lang%3Den%26re gion%3DGB%26focus%3Dproduct

- Merck. (2020). Safety Data Sheet: CELLULOSE, (REGENERATED CELLULOSE), FIBER, TEX NUMBER 16.7, LENGTH 1000 M, NUMBER OF FILAMENTS BLACK, 1 SPOOL. https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=GF66871659&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigma aldrich.com%2Fcatalog%2Fproduct%2Faldrich%2Fgf66871659%3Flang%3Den
- METI. (1990). Biodegradation and Bioconcentration Results Triethylamine. https://www.nite.go.jp/en/chem/chrip/chrip\_search/cmpInfDsp?cond=846666a4246b64cfb8c7ab2572 4d6084ad5ba7d2459b074215a5f4e2df8dc99c\_2
- METI. (2013). Biodegradation and Bioconcentration Results 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctan-1-ol. https://www.nite.go.jp/chem/jcheck/detail.action?cno=647-42-7&mno=2-2402&request\_locale=en
- METI. (2019a). Biodegradation and Bioconcentration Results 3-(isocyanatomethyl)-3,5,5trimethylcyclohexyl isocyanate.
  - https://www.nite.go.jp/en/chem/chrip/chrip\_search/cmpInfDsp?cid=C004-706-

 $\label{eq:shift} 37A\&bcPtn=0\&shMd=0\&txNumSh=NDA5OC03MS05\&ltNumTp=1\&ltNumMh=0&txNmSh=&ltNmTp=&ltNmMh=1&txNmSh1=&ltNmTp1=&txNmSh2=&ltNmTp2=&txNmSh3=&ltNmTp3=&txMlSh=&ltMlMh=0&ltScDp=0&ltPgCtSt=100&rbDp \\ \end{tabular}$ 

- METI. (2019b). Biodegradation and Bioconcentration Results 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-yl acrylate. https://www.nite.go.jp/en/chem/chrip/chrip\_search/cmpInfDsp?cid=C006-286-86A&bcPtn=0&shMd=0&txNumSh=MTc1MjctMjktNg==&ltNumTp=1&ltNumMh=0&txNmSh=&l tNmTp=&ltNmMh=1&txNmSh1=&ltNmTp1=&txNmSh2=&ltNmTp2=&txNmSh3=&ltNmTp3=&tx MlSh=&ltMlMh=0&ltScDp=0&ltPgCtSt=100&
- METI. (2019c). Biodegradation and Bioconcentration Results 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-yl methacrylate. https://www.nite.go.jp/en/chem/chrip/chrip\_search/cmpInfDsp?cid=C006-679-85A&bcPtn=0&shMd=0&txNumSh=MjE0NC01My04&ltNumTp=1&ltNumMh=0&txNmSh=&ltN mTp=&ltNmMh=1&txNmSh1=&ltNmTp1=&txNmSh2=&ltNmTp2=&txNmSh3=&ltNmTp3=&txM lSh=&ltMlMh=0&ltScDp=0&ltPgCtSt=100&rbDp
- METI. (2019d). Biodegradation and Bioconcentration Results Reaction products of 2-(chloromethyl)oxirane, 3,6-diazaoctane-1,8-diyldiamine and (1,1,1,2,2-pentafluoro-2-iodoethane / perfluoroethene / prop-2-en-1-ol copolymer). https://www.nite.go.jp/en/chem/chrip/chrip\_search/cmpInfDsp?cid=C006-796-78A&bcPtn=0&shMd=0&txNumSh=NDY0MTc4LTkwLTM=&ltNumTp=1&ltNumMh=0&txNmSh =&ltNmTp=&ltNmMh=1&txNmSh1=&ltNmTp1=&txNmSh2=&ltNmTp2=&txNmSh3=&ltNmTp3= &txMlSh=&ltMlMh=0&ltScDp=0&ltPgCtSt=100&
- Monarch Green Inc. (n.d.). Material Safety Data Sheet: HIGH GRADECEL-FIBER™. <u>https://monarchgreen.com/wp-content/uploads/2014/08/CEL-FIBER-UNIVERSAL-MSDS-4-21-</u> <u>14.pdf</u>
- Moreta, C. and Tena, M.T., 2013. Fast determination of perfluorocompounds in packaging by focused ultrasound solid–liquid extraction and liquid chromatography coupled to quadrupole-time of flight mass spectrometry. Journal of Chromatography A, 1302, pp.88-94.
- NICNAS. (2005). Existing Chemical Hazard Assessment Report Potassium Perfluorobutane Sulfonate. https://www.industrialchemicals.gov.au/sites/default/files/Potassium perfluorobutane sulfonate.pdf
- NICNAS. (2013). National Industrial Chemicals Notification and Assessment Scheme (NICNAS) -Polymer of low concern public report: Propanoic acid, 3-hydroxy-2-(hydroxymethyl)-2-methyl-, polymers with 5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane and reduced Me esters of reduced polymd. oxidized tetrafluoroethylene, compds. with triethylamine. https://www.industrialchemicals.gov.au/sites/default/files/PLC1136%20Public%20Report%20PDF.p
  - https://www.industrialchemicals.gov.au/sites/default/files/PLC1136%20Public%20Report%20PDF.p df
- NICNAS. (2015a). Direct precursors to perfluorooctanesulfonate (PFOS): Environment tier II assessment.

https://www.industrialchemicals.gov.au/sites/default/files/Direct%20precursors%20to%20perfluorooc tanesulfonate%20%28PFOS%29\_%20Environment%20tier%20II%20assessment.pdf

- NICNAS. (2015b). Indirect precursors of perfluorobutanesulfonate (PFBS): Environment Tier II Assessment. https://www.industrialchemicals.gov.au/sites/default/files/Indirect precursors of perfluorobutanesulfonate %28PFBS%29\_ Environment tier II assessment.pdf
- NICNAS. (2015c). Indirect precursors to perfluoroalkyl sulfonates: Environment tier II assessment. https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20precursors%20to%20perfluoro alkyl%20sulfonates\_%20Environment%20tier%20II%20assessment.pdf
- NICNAS. (2015d). Indirect precusors of perfluoroalkane sulfonic acids (PFSA) (C5-C7): Human health tier II assessment.

https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20 precusors%20 of%20 perfluoroalkane%20 sulfonic%20 acids%20%28 PFSA%29%20%28 C5-

- $C7\% 29\_Human\% 20 health\% 20 tier\% 20 II\% 20 assessment.pdf$
- NICNAS. (2015e). Perfluorobutanesulfonic acid and its direct precursors: Environment tier II assessment. In Australian Inventory of Chemical Substances.

https://www.industrialchemicals.gov.au/sites/default/files/Perfluorobutanesulfonic acid and its direct precursors\_ Environment tier II assessment.pdf

NICNAS. (2015f). Perfluorooctane sulfonate (PFOS) and its Direct Precursors: Human health tier II assessment.

 $https://www.industrialchemicals.gov.au/sites/default/files/Perfluorooctane\%20sulfonate\%20\%28PFOS\%29\%20and\%20its\%20Direct\%20Precursors_Human\%20health\%20tier\%20II\%20assessment.pdf$ 

NICNAS. (2015g). Indirect Precursors of Perfluorobutanesulfonate (PFBS): Human health tier II assessment.

https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20Precursors%20of%20Perfluoro butanesulfonate%20%28PFBS%29\_Human%20health%20tier%20II%20assessment.pdf

NICNAS. (2016a). Indirect Precursors of Perfluorooctane Sulfonate (PFOS): Human health tier II assessment.

https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20Precursors%20of%20Perfluoro octane%20Sulfonate%20%28PFOS%29\_Human%20health%20tier%20II%20assessment.pdf

- NICNAS. (2016b). Polyphosphoric acids: Human health tier II assessment. https://www.industrialchemicals.gov.au/sites/default/files/Polyphosphoric%20acids\_Human%20healt h%20tier%20II%20assessment.pdf
- NICNAS. (2019a). Indirect precursors of short chain perfluorocarboxylic acids (PFCAs): Human health tier II assessment.

https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20precursors%20of%20short%20 chain%20perfluorocarboxylic%20acids%20%28PFCAs%29\_Human%20health%20tier%20II%20ass essment.pdf

- NICNAS. (2019b). Indirect precursors to perfluorooctanesulfonate (PFOS): Environment tier II assessment. https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20precursors%20to%20perfluoro octanesulfonate%20%28PFOS%29\_%20Environment%20tier%20II%20assessment.pdf
- NICNAS. (2019c). Indirect precursors to short-chain perfluorocarboxylic acids: Environment tier II assessment.

 $https://www.industrialchemicals.gov.au/sites/default/files/Indirect\% 20 precursors\% 20 to\% 20 short-chain\% 20 perfluorocarboxylic\% 20 acids_\% 20 Environment\% 20 tier\% 20 II \% 20 assessment.pdf$ 

NICNAS. (2019d). Perfluorobutanesulfonate (PFBS) and its direct precursors: Human health tier II assessment.

https://www.industrialchemicals.gov.au/sites/default/files/Perfluorobutanesulfonate%20%28PFBS%2 9%20and%20its%20direct%20precursors\_Human%20health%20tier%20II%20assessment.pdf Oakwood. (2020). Safety Data Sheet: 2-(Perfluorohexyl)ethyl acrylate.

- https://www.oakwoodchemical.com/ShowMSDS1j3h4g5d7a94h.aspx?Number=019154
- OECD/UNEP Global PFC Group. (2013). United Nations Environment Programme: Synthesis paper on per- and polyfluorinated chemicals (PFCs). In IOMC: Inter-Organization Programme for the Sound Managment of Chemicals.
- OECD. (2012a). SIDS Initial Assessment Profile Tertiary Amines (Issue April).

OECD. (2012b). SIDS Initial Assessment Profiles agreed in the course of the OECD HPV Chemicals Programme from 1993 to 2011.

http://www.oecd.org/officialdocuments/displaydocumentpdf?cote=env/jm/mono(2010)46&doclangua

ge=en

- OECD. (2020). PFASs and Alternatives in Food Packaging (Paper and Paperboard) Report on the Commercial Availability and Current Uses. OECD Series on Risk Management, No. 58 (Issue 58).
- Poothong, S., Boontanon, S.K. and Boontanon, N., 2012. Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry. Journal of hazardous materials, 205, pp.139-143.
- Ramboll Environ. (2014). Assessment of POP Criteria for Specific Short-Chain Perfluorinated Alkyl Substances. https://fluorocouncil.com/wp-content/uploads/2017/08/2014-ENVIRON-Report.pdf
- Ramboll Environ. (2016). Companion Report to Ramboll Environ's January 2014 Assessment of POP Criteria for Specific Short-Chain Perfluorinated Alkyl Substances. http://chm.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC12/POPRC12Followup /PFOAInfo/tabid/5453/ctl/Download/mid/16353/Default.aspx?id=3&ObjID=22840
- Resolute Forest Products. (2015). Safety Data Sheet: Bleached Kraft Pulp (Cellulose). https://www.resolutefp.com/uploadedFiles/Sustainability/Conservation\_and\_Biodiversity(1)(1)/1B\_B leached%20Kraft%20Pulp%20SDS-Resolute-20150715\_1.pdf
- RIVM. (2011). Identifying potential POP and PBT substances: Development of a new Persistence/Bioaccumulation-score. In RIVM Report 601356001/2011. https://www.rivm.nl/bibliotheek/rapporten/601356001.pdf
- Santa Cruz Biotechnology, (2015a). Safety Data Sheets: 2-(Perfluorohexyl)ethyl methacrylate https://www.scbt.com/p/2-perfluorohexyl-ethyl-methacrylate-2144-53-8
- Santa Cruz Biotechnology. (2015b). Safety Data Sheet: 1H,1H,2H,2H-Perfluoro-1-octanol. https://datasheets.scbt.com/sds/aghs/en/sc-237819.pdf
- Santa Cruz Biotechnology. (2017a). Safety Data Sheet: Potassium nonafluoro-1-butanesulfonate. https://datasheets.scbt.com/sds/aghs/en/sc-250762.pdf
- Santa Cruz Biotechnology. (2017b). Safety Data Sheet: 2-Hydroxy-2-methylpropiophenone. https://www.scbt.com/p/2-hydroxy-2-methylpropiophenone-7473-98-5
- Santa Cruz Biotechnology. (2017c). Safety Data Sheet: 1,2,4-Trivinylcyclohexane, mixture of isomers. https://www.scbt.com/p/1-2-4-trivinylcyclohexane-mixture-of-isomers-2855-27-8
- Santa Cruz Biotechnology. (2018a). Safety Data Sheet: Phosphorus pentoxide.
- https://www.scbt.com/p/phosphorus-pentoxide-1314-56-3
- Santa Cruz Biotechnology. (2018b). Safety Data Sheet: 2,2-Bis(hydroxymethyl)propionic acid. https://datasheets.scbt.com/sds/eghs/en/sc-254297.pdf
- Santa Cruz Biotechnology. (2019). Safety Data Sheet: Pyrophosphoric acid. https://www.scbt.com/p/pyrophosphoric-acid-2466-09-3
- Santa Cruz Biotechnology. (2020). Safety Data Sheet: N-Ethyl-N-(2hydroxyethyl)perfluorooctylsulphonamide. <u>https://datasheets.scbt.com/sds/aghs/en/sc-492985.pdf</u>
- Sigma-Aldrich. (2014a). Safety Data Sheet: Heptadecafluorooctanesulfonic acid tetraethylammonium salt. https://www.chemblink.com/MSDS/MSDSFiles/56773-42-3\_Sigma-Aldrich.pdf
- Sigma-Aldrich. (2014b). Safety Data Sheet: Silicone Oil. https://www.sigmaaldrich.com/MSDS/MSDS/PleaseWaitMSDSPage.do?language=&country=GB&b rand=SIAL&productNumber=146153&PageToGoToURL=https://www.sigmaaldrich.com/catalog/pr oduct/sial/146153?lang=en&region=GB
- Sigma-Aldrich. (2015). Safety Data Sheet: 2-Hydroxy-2-methylpropiophenone. https://www.chemblink.com/MSDS/MSDSFiles/7473-98-5\_Sigma-Aldrich.pdf

Sigma-Alrich. (2019a). Safety Data Sheet: Perfluorohexyl iodide. https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=262145&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldric h.com%2Fcatalog%2Fsearch%3Fterm%3D355-43-1%26interface%3DCAS%2520No.%26N%3D0%26mode%3Dpartialmax%26lang%3Den%26region %3DGB%26focus%3Dproduct%26F%3DPR%26ST%3DRS%26N3%3Dmode%2520matchpartialma x%26N5%3DCAS%2520No

Sigma-Aldrich. (2019b). Safety Data Sheet: 1H,1H,2H,2H-Perfluoro-1-octanol. https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=370533&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldric h.com%2Fcatalog%2Fsearch%3Fterm%3D647-42-7%26interface%3DCAS%2520No.%26N%3D0%26mode%3Dpartialmax%26lang%3Den%26region

7%26interface%3DCAS%2520No.%26N%3D0%26mode%3Dpartialmax%26lang%3Den%26region %3DGB%26focus%3Dproduct

- Sigma-Aldrich. (2020a). Safety Data Sheet. 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate. https://www.sigmaaldrich.com/catalog/product/aldrich/474347?lang=en&region=GB
- Sigma-Aldrich. (2020b). Safety Data Sheet: Potassium nonafluoro-1-butanesulfonate.

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=294209&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldric h.com%2Fcatalog%2Fsearch%3Fterm%3D29420-49-

3% 26 interface % 3 DCAS% 2520 No.% 26 N% 3 D0% 2 B% 26 mode % 3 Dpartial max% 26 lang% 3 Den% 26 region % 3 DGB% 26 focus% 3 Dproduct

Sigma-Aldrich. (2020c). Safety Data Sheet: Sulfluramid.

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=91242&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.com %2Fcatalog%2Fsearch%3Fterm%3D4151-50-

2%26interface%3DCAS%2520No.%26N%3D0%26mode%3Dpartialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct

Sigma-Aldrich. (2020d). Safety Data Sheet: Pyrophosphoric acid.

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=433314&brand=SIGALD&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich. com%2Fcatalog%2Fsearch%3Fterm%3D2466-09-

3% 26 interface % 3 DCAS % 2520 No.% 26 N% 3 D0% 26 mode % 3 D partial max % 26 lang % 3 Den % 26 region % 3 DGB % 26 focus % 3 D product

Sigma-Aldrich. (2020e). Safety Data Sheet: Isophorone diisocyanate.

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=317624&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldric h.com%2Fcatalog%2Fsearch%3Fterm%3D4098-71-

9%26interface%3DCAS%2520No.%26N%3D0%26mode%3Dpartialmax%26lang%3Den%26region %3DGB%26focus%3Dproduct

Sigma-Aldrich. (2020f). Safety Data Sheet: 2,2-Bis(hydroxymethyl)propionic acid. https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=106615&brand=ALDRICH&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldric h.com%2Fcatalog%2Fsearch%3Fterm%3D4767-03-

7%26interface%3DCAS%2520No.%26N%3D0%26mode%3Dpartialmax%26lang%3Den%26region%3DGB%26focus%3Dproduct

Sigma-Aldrich. (2020g). Safety Data Sheet: Triethylamine.

https://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=GB&language=en&pr oductNumber=471283&brand=SIAL&PageToGoToURL=https%3A%2F%2Fwww.sigmaaldrich.co m%2Fcatalog%2Fsearch%3Fterm%3D121-44-

8%26interface%3DCAS%2520No.%26N%3D0%2B%26mode%3Dpartialmax%26lang%3Den%26re gion%3DGB%26focus%3Dproduct

- Sundeala. (2018). Safety Data Sheet: Sundeala FR Board. https://sundeala.co.uk/wpcontent/uploads/2018/02/Sundeala-FR-MSDS.pdf
- Surma, M., Wiczkowski, W., Zieliński, H. and Cieślik, E., 2015. Determination of selected perfluorinated acids (PFCAs) and perfluorinated sulfonates (PFASs) in food contact materials using LC-MS/MS. Packaging technology and science, 28(9), pp.789-799.
- SynQuest. (2016). Safety Data Sheet: Tetraethylammonium perfluorooctanesulfonate. https://www.chemblink.com/MSDS/MSDSFiles/56773-42-3\_Syn-Quest.pdf

SynQuest. (2017). Safety Data Sheet: N-Ethyl-N-(2-hydroxyethyl)perfluorooctylsulfonamide. https://www.chemblink.com/MSDS/MSDSFiles/1691-99-2\_Syn-Quest.pdf

- SynQuest. (2018). Safety Data Sheet: 2-(N-Ethylperfluorooctanesulfamido)ethyl acrylate. https://www.chemblink.com/MSDS/MSDSFiles/423-82-5\_Syn-Quest.pdf
- TCI. (2013). Safety Data Sheet: Isophorone Diisocyanate (mixture of isomers).
- https://www.chemblink.com/MSDS/MSDSFiles/4098-71-9\_TCI.pdf
- TCI. (2016). Safety Data Sheet: Tetrabutylammonium Hexafluorophosphate. https://www.chemblink.com/MSDS/MSDSFiles/3109-63-5\_TCI.pdf
- TCI. (2018a). Safety Data Sheet: 1H,1H,2H,2H-Tridecafluoro-n-octyl Methacrylate (stabilized with MEHQ). https://www.tcichemicals.com/IN/en/p/T3259#docomentsSectionPDP
- TCI. (2018b). Safety Data Sheet: 1H,1H,2H,2H-Tridecafluoro-n-octyl Acrylate (stabilized with HQ + MEHQ). https://www.tcichemicals.com/GB/en/p/T3451

- TCI. (2018c). Safety Data Sheet: 1,2,4-Trivinylcyclohexane (mixture of isomers). https://www.tcichemicals.com/IE/en/p/T0899
- TCI. (2019a). Safety Data Sheet: Tridecafluorohexyl Iodide. https://www.tcichemicals.com/GB/en/p/T1098
- TCI. (2019b). Safety Data Sheet: 2,2-Bis(hydroxymethyl)propionic Acid.
- https://www.tcichemicals.com/GB/en/p/B1192#docomentsSectionPDP TCI. (2020a). Safety Data Sheet: Potassium Nonafluoro-1-butanesulfonate.
- https://www.tcichemicals.com/GB/en/p/N0711 TCI. (2020b). Safety Data Sheet: Tetrabutylammonium Hexafluorophosphate. https://www.tcichemicals.com/HK/en/p/T1279#docomentsSectionPDP
- Thermo-Fisher Scientific. (2017). Safety Data Sheet: 2,2-Bis(hydroxymethyl)propionic acid. https://www.chemblink.com/MSDS/MSDSFiles/4767-03-7\_Alfa-Aesar.pdf
- Thermo-Fisher Scientific. (2020a). Safety Data Sheet: 1H,1H,2H,2H-Perfluorooctanol. https://www.fishersci.com/store/msds?partNumber=AAB2015609&productDescription=1H1H2H2H-PERFLROOCTNOL+97%25+10G&vendorId=VN00024248&countryCode=US&language=en
- Thermo-Fisher Scientific. (2020b). Safety Data Sheet: Triethylamine.
- https://www.alfa.com/en/msds/?language=EN&subformat=AGHS&sku=A12646 Thermo-Fisher Scientific. (2021a). Safety Data Sheet: Tetra-n-butylammonium hexafluorophosphate.
- https://www.alfa.com/en/msds/?language=EE&subformat=CLP1&sku=A17196
- Thermo-Fisher Scientific. (2021b). Safety Data Sheet: Isophorone diisocyanate, mixture of isomers. <u>https://www.alfa.com/en/msds/?language=EE&subformat=CLP1&sku=L13759</u>
- US EPA. (1990). Background Document to the Integrated Risk Assessment for Dioxins and Furans from Chemical Bleaching in Pulp and Paper Mills.
- https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9101NOMC.txt US EPA. (1991). IRIS Assessments - Triethylamine; CASRN 121-44-8.
- US EPA. (2017). Technical Fact Sheet Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) (Issue May). <u>https://www.epa.gov/sites/production/files/2017-</u>12/documents/ffrrofactsheet contaminants pfos pfoa 11-20-17 508 0.pdf
- US EPA. (2018). Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3)
- Verso. (2015). Safety Data Sheet: Recycle Cellulose Pulp. https://www.versoco.com/wps/wcm/connect/d639845f-81cf-42bf-9841-7fb10727c8f5/SDS+-
- +Verso+Recycle+Pulp.pdf?MOD=AJPERES
   Wang, Z., Cousins, I.T., Scheringer, M., Buck, R.C. & Hungerbühler, K. (2014). 'Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part
- II: The remaining pieces of the puzzle', Environment international, vol. 69, pp. 166-176 WestRock. (2019). Safety Data Sheet: Bleached Market Pulp. https://www.westrock.com/-
- /media/pdf/safety-data-sheets/wr002-bleached-market-pulp-1-10-2019.pdf?modified=20190429195126
- Zabaleta, I., Negreira, N., Bizkarguenaga, E., Prieto, A., Covaci, A. and Zuloaga, O., 2017. Screening and identification of per-and polyfluoroalkyl substances in microwave popcorn bags. Food chemistry, 230, pp.497-506

### Annex A. Substances Identified as Chemical or Material Alternatives to Long-Chain PFAS

The tables of fluorinated and non-fluorinated alternatives below were compiled by the OECD (2020) from a focus on alternatives for paper and paperboard food packaging. The non-fluorinated alternatives include chemical and material alternatives without PFAS for creating physical barrier properties in paper and paperboard. The OECD's basis for inclusion of alternatives was those substances that are positively listed or authorised for use in food packaging in key regulatory regimes in OECD member countries and regions (see Section 1.2).

#### **Fluorinated Alternatives**

| Substance Name                                                                                                                                                                                                                  | Synonyms                                                                                                                | CAS Number          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|
| 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate                                                                                                                                                                       |                                                                                                                         | 2144-53-8           |
| 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate                                                                                                                                                                           |                                                                                                                         | 17527-29-6          |
| 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl malate                                                                                                                                                                             |                                                                                                                         | No CAS<br>Available |
| 3,3,4,4,5,5,6,6,7,7,8,8,8- tridecafluorooctyl sodium salt                                                                                                                                                                       |                                                                                                                         | No CAS<br>Available |
| Phosphoric acid ester of ethoxylated perfluoropoly-etherdiol                                                                                                                                                                    | Diphosphoric acid, polymers with<br>ethoxylated reduced Me esters of<br>reduced polymd. oxidized<br>tetrafluoroethylene | 200013-65-6         |
| Perfluoropolyetherdicarbonic acid, ammonium salt                                                                                                                                                                                | Ethene, 1,1,2,2-tetrafluoro-,<br>oxidized, polymd., reduced                                                             | 69991-62-4          |
| 2-Propen-1-ol, reaction products with<br>1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluoro-6-<br>iodohexane, de-hydroiodinated, reaction<br>products with epichlorohydrin and<br>triethylenetetr-amine with a fluorine content<br>of 54% | 1,1,1,2,2,3,3,4,4,5,5,6,6-<br>tridecafluoro-6-iodohexane                                                                | 355-43-1            |
| Reaction product of hexamethylene-1,6-<br>diisocyanate (homopolymer), converted with<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-<br>octanol with a fluorine content of 48%                                                    | 3,3,4,4,5,5,6,6,7,7,8,8,8-<br>tridecafluorooctan-1-ol                                                                   | 647-42-7            |
| N-(2-Hydroxyethyl) perfluorooctyl sulphonamide                                                                                                                                                                                  | N-ethylheptadecafluoro-N-(2-<br>hydroxyethyl)octanesulphonamide                                                         | 1691-99-2           |
| 1-Butanesulfonic acid                                                                                                                                                                                                           | Potassium 1,1,2,2,3,3,4,4,4-<br>nonafluorobutane-1-sulphonate                                                           | 29420-49-3          |
| Acrylic acid, ester with N-ethyl-<br>1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-<br>heptadecafluoro-N-(2-hydroxyethyl)-1-<br>octane-sulfonamide                                                                                          | 2-<br>[ethyl[(heptadecafluorooctyl)sulpho<br>nyl]amino]ethyl acrylate                                                   | 423-82-5            |
| 2-Propenoic acid, 2-<br>[ethyl[(tridecafluorohexyl)sulfonyl]-<br>amino]ethylester                                                                                                                                               | 2-<br>[ethyl[(tridecafluorohexyl)sulphony<br>]]amino]ethyl acrylate                                                     | 1893-52-3           |
| 1-Butanaminium, N,N,N-tributyl-,<br>hexafluorophosphate(1-)                                                                                                                                                                     | Tetrabutylammonium<br>hexafluorophosphate                                                                               | 3109-63-5           |
| 1-Octanesulfonamide, N-ethyl-<br>1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-<br>heptadecafluoro                                                                                                                                          | N-<br>ethylheptadecafluorooctanesulphon<br>amide                                                                        | 4151-50-2           |
| Ethanaminium, N,N,N-triethyl-, salt with 1,1,2,2,3,3,4,4, 5,5,6,6,7,7,8,8,8-heptadecafluoro-1-                                                                                                                                  | Tetraethylammonium<br>heptadecafluorooctanesulphonate                                                                   | 56773-42-3          |

#### ENV/CBC/MONO(2022)2 | 31

| Substance Name                                                                                                                                                                                                                                             | Synonyms                                                                                       | CAS Number   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|
| octanesulfonicacid (1:1)                                                                                                                                                                                                                                   |                                                                                                |              |
| 2-Propanoic acid, 2-<br>(ethyl(pentadecafluoroheptyl)-<br>sulfonyl)amino)ethyl ester                                                                                                                                                                       | 2-<br>[ethyl[(pentadecafluoroheptyl)sulph<br>onyl]amino]ethyl acrylate                         | 59071-10-2   |
| Glycine, N-ethyl-N-<br>(nonafluorobutyl)sulfonyl]-, potassium salt                                                                                                                                                                                         | Potassium N-ethyl-N-<br>[(nonafluorobutyl)sulphonyl]glycin<br>ate                              | 67584-51-4   |
| Glycine, N-ethyl-N-<br>(undecafluoropentyl)sulfonyl]-, potassium<br>salt                                                                                                                                                                                   | Potassium N-ethyl-N-<br>[(undecafluoropentyl)sulphonyl]gly<br>cinate                           | 67584-52-5   |
| Glycine, N-ethyl-N-<br>(tridecafluorohexyl)sulfonyl]-, potassium<br>salt                                                                                                                                                                                   | Potassium N-ethyl-N-<br>[(tridecafluorohexyl)sulphonyl]glyc<br>inate                           | 67584-53-6   |
| Acrylic acid, 2-[methyl[(nonafluorobutyl)<br>sulfonyl] amino] ethylester                                                                                                                                                                                   | 2-<br>[methyl[(nonafluorobutyl)sulphonyl]<br>]amino]ethyl acrylate                             | 67584-55-8   |
| Glycine, N-ethyl-N-<br>(pentadecafluoroheptyl)sulfonyl]-,<br>potassium salt                                                                                                                                                                                | Potassium N-ethyl-N-<br>[(pentadecafluoroheptyl)sulphonyl]<br>glycinate                        | 67584-62-7   |
| Glycine, N-ethyl-N-<br>((heptadecafluorooctyl)sulfonyl]-, potassium<br>salt                                                                                                                                                                                | Potassium N-ethyl-N-<br>[(heptadecafluorooctyl)sulphonyl]gl<br>ycinate                         | 2991-51-7    |
| 2-propenoic acid, 2-methyl-, 2-hydroxyethyl<br>ester, polymer with 2-propenoic acid and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl<br>2-methyl-2-propenoate, sodium salt                                                                              |                                                                                                | 1878204-24-0 |
| Copolymer of 2-(dimethylamino) ethyl<br>methacrylate with 3,3,4,4,5,5,6,6,7,7,8,8,8-<br>ridecafluorooctyl methacrylate, N-oxide,<br>acetate                                                                                                                |                                                                                                | 1440528-04-0 |
| 2-Propenoic acid, 2-methyl-, 2-<br>(dimethylamino)ethyl ester, polymer with 1-<br>ethenyl-2-pyrrolidinone and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl<br>2-propenoate, acetate                                                                     |                                                                                                | 1334473-84-5 |
| Butanedioic acid, 2-methylene-, polymer<br>with 2-hydroxyethyl, 2-methyl-2-<br>propenoate, 2-methyl-2-propenoic acid and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl<br>2-methyl-2-propenoate, sodium salt                                             |                                                                                                | 1345817-52-8 |
| Hexane, 1,6-diisocyanato-, homopolymer, a-<br>[1-[[[3-[[3<br>(dimethylamino)propyl]amino]propyl]amino<br>(carbonyl]-1,2,2,2-tetrafluoroethyl]-?-<br>(1,1,2,2,3,3,3-<br>neptafluoropropoxy)poly[oxy[trifluoro(triflu<br>promethyl)-1,2-ethanediyl]]-blocked |                                                                                                | 1279108-20-1 |
| 2-propenoic acid, 2-methyl-, 2-hydroxyethyl<br>ester polymer with 1-ethyenyl-2-<br>byrrolidinone, 2-propenoic acid and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl<br>2-propenoate sodium salt                                                         |                                                                                                | 1206450-10-3 |
| Diphosphoric acid, polymers with                                                                                                                                                                                                                           | Phosphate esters of ethoxylated                                                                | 162492-15-1  |
| ethoxylated reduced methyl esters of reduced polymerized oxidized                                                                                                                                                                                          | perfluoroether, prepared by reaction                                                           | 1314-56-3    |
| etrafluoroethylene                                                                                                                                                                                                                                         | of<br>ethoxylated perfluoroether diol with<br>phosphorous pentoxide or<br>pyrophosphoric acid. | 2466-09-3    |
| 2-propenoic acid, 2-methyl-, polymer with<br>2-hydroxyethyl 2-methyl-2-propenoate, a-                                                                                                                                                                      |                                                                                                | 1158951-86-0 |

| Substance Name                                                                                                                                                                                                                                                                  | Synonyms                                                                                                                                                                                                                                                                                       | CAS Number   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (1-oxo-2-propen-1-yl)-?-hydroxypoly(oxy-<br>1,2-ethanediyl) and 3,3,4,4,5,5,6,6,7,7,8,8,8-<br>tridecafluorooctyl 2-propenoate, sodium salt                                                                                                                                      |                                                                                                                                                                                                                                                                                                |              |
| 2-propenoic acid, 2-hydroxyethyl ester,<br>polymer with a-(1-oxo-2-propen-1-yl)-?-<br>hydroxypoly(oxy-1,2-ethanediyl), a-(1-oxo-<br>2-propen-1-yl)-?-[(1-oxo-2-propen-1-<br>yl)oxy]poly(oxy-1,2-ethanediyl) and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl<br>2-propenoate |                                                                                                                                                                                                                                                                                                | 1012783-70-8 |
| 2-Propenoic acid, 3,3,4,4,5,5,6,6,7,7,8,8,8-<br>tridecafluorooctyl ester, polymer with a-(1-<br>oxo-2-propen-1-yl)-?-hydroxypoly(oxy-1,2-<br>ethanediyl)                                                                                                                        | 2-Propenoic acid, ethyl ester,<br>polymer with 4-<br>[[(heptadecafluorooctyl)<br>sulfonyl]methylamino]butyl 2-<br>propenoate, 4-<br>[methyl[(nonafluorobutyl)<br>sulfonyl]amino]butyl 2-propenoate,<br>alpha-(2-methyl-1-oxo-2-propenyl)-<br>omega-hydroxypoly(oxy-1,4-<br>butanediyl), alpha- | 68228-00-2   |
| 2-propen-1-ol, reaction products with<br>1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-6-<br>iodohexane, dehydroiodinated, reaction<br>products with epichlorohydrin and<br>triethylenetetramine                                                                                        |                                                                                                                                                                                                                                                                                                | 464178-94-7  |
| Copolymer of perfluorohexylethyl<br>methacrylate, 2-N,N-diethylaminoethyl<br>methacrylate, 2-hydroxyethyl<br>methacrylate, and 2,2'-<br>ethylenedioxydiethyl dimethacrylate,<br>acetic acid salt                                                                                |                                                                                                                                                                                                                                                                                                | 863408-20-2  |
| Copolymer of perfluorohexylethyl<br>methacrylate, 2-N,N-diethylaminoethyl<br>methacrylate, 2-hydroxyethyl<br>methacrylate, and 2,2'-<br>ethylenedioxydiethyl dimethacrylate, malic<br>acid salt                                                                                 |                                                                                                                                                                                                                                                                                                | 1225273-44-8 |
| 2-propen-1-ol, reaction products with<br>pentafluoroiodoethane-tetrafluoroethylene<br>telomer, dehydroiodinated, reaction products<br>with epichlorohydrin and<br>triethylenetetramine                                                                                          |                                                                                                                                                                                                                                                                                                | 464178-90-3  |
| Tetrafluoroethylene, oxidized, oligomers, reduced, methyl esters, reduced                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                | 88645-29-8   |
| Fluorinated polyurethane anionic resin                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                | 328389-91-9  |
| prepared by reacting perfluoropolyether diol, sophorone diisocyanate, 2,2-                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                | 4098-71-9    |
| limethylolpropionic acid, and triethylamine                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                | 4767-03-7    |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                | 121-44-8     |
| Hexane, 1,6-diisocyanato-, homopolymer,<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-<br>octanol-blocked                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                | 357624-15-8  |
| 2-propenoic acid, 2-methyl-, polymer with<br>2-(diethylamino)ethyl 2-methyl-2-<br>propenoate, 2-propenoic acid and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl<br>2-methyl-2-propenoate, acetate                                                                            |                                                                                                                                                                                                                                                                                                | 1071022-26-8 |

#### **Non-fluorinated Alternatives**

| Substance Name                                                                                                                                  | CAS Number                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| TopScreenTM formulations                                                                                                                        | No CAS Available<br>(confidential) |
| Natural greaseproof paper (NGP)                                                                                                                 | N/A                                |
| Silicone oils (with added preserving agents)                                                                                                    | N/A                                |
| Silicone resins                                                                                                                                 | N/A                                |
| Silicone elastomers                                                                                                                             | N/A                                |
| Natural and synthetic cellulose fibres bleached or unbleached                                                                                   | N/A                                |
| Wood pulp bleached or unbleached                                                                                                                | N/A                                |
| Recycled fibres made from paper or paperboard                                                                                                   | N/A                                |
| 2-hydroxy-2-methylpropiophenone                                                                                                                 | 7473-98-5                          |
| Siloxanes and Silicones, di-Me, hydrogen-terminated, reaction products with acrylic acid and 2-ethyl-2- [(2-propenyloxy)methyl]-1,3-propanediol | 155419-56-0                        |
| Cyclohexane-1,2,4-triyltris(ethylene)                                                                                                           | 2855-27-8                          |
| Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated, reaction products with 2-((3-(trimethoxysilyl)propoxy)methyl)oxirane              | 102782-94-5                        |
| Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated, reaction products with 3-(2-(trimethoxysilyl)ethyl)bicyclo(4.1.0)heptane          | 917773-10-5                        |

## Annex B. Data Availability of Fluorinated and Non-fluorinated Alternatives

#### **Fluorinated Alternatives**

| Substance Name                                                                                                                                                                                                           | CAS              | Authority<br>Classifications | Industry<br>Classifications | HH Hazard<br>Assessments | Environmental<br>Hazard<br>Assessments | Persistence &<br>Bioaccumulation<br>Assessments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|-----------------------------|--------------------------|----------------------------------------|-------------------------------------------------|
| 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate                                                                                                                                                                | 2144-53-8        |                              |                             |                          |                                        |                                                 |
| 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate                                                                                                                                                                    | 17527-29-6       |                              |                             |                          |                                        |                                                 |
| 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl malate                                                                                                                                                                      | No CAS Available |                              |                             |                          |                                        |                                                 |
| 3,3,4,4,5,5,6,6,7,7,8,8,8- tridecafluorooctyl sodium salt                                                                                                                                                                | No CAS Available |                              |                             |                          |                                        |                                                 |
| Phosphoric acid ester of ethoxylated perfluoropoly-etherdiol                                                                                                                                                             | 200013-65-6      |                              |                             |                          |                                        |                                                 |
| Perfluoropolyetherdicarbonic acid, ammonium salt                                                                                                                                                                         | 69991-62-4       |                              |                             |                          |                                        |                                                 |
| 2-Propen-1-ol, reaction products with 1,1,1,2,2,3,3,4,4,5,5,6,6-<br>tridecafluoro-6-iodohexane, de-hydroiodinated, reaction products with<br>epichlorohydrin and triethylenetetr-amine with a fluorine content of<br>54% | 355-43-1         |                              |                             |                          |                                        |                                                 |
| Reaction product of hexamethylene-1,6-diisocyanate (homopolymer), converted with 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol with a fluorine content of 48%                                                        | 647-42-7         |                              |                             |                          |                                        |                                                 |
| N-(2-Hydroxyethyl) perfluorooctyl sulphonamide                                                                                                                                                                           | 1691-99-2        |                              |                             |                          |                                        |                                                 |
| 1-Butanesulfonic acid                                                                                                                                                                                                    | 29420-49-3       |                              |                             |                          |                                        |                                                 |
| Acrylic acid, ester with N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-N-(2-hydroxyethyl)-1-octane-sulfonamide                                                                                               | 423-82-5         |                              |                             |                          |                                        |                                                 |
| 2-Propenoic acid, 2-[ethyl[(tridecafluorohexyl)sulfonyl]-<br>amino]ethylester                                                                                                                                            | 1893-52-3        |                              |                             |                          |                                        |                                                 |

#### ENV/CBC/MONO(2022)2 | 35

| 1-Butanaminium, N,N,N-tributyl-, hexafluorophosphate(1-)                                                                                                                                                                                             | 3109-63-5    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| 1-Octanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-<br>heptadecafluoro                                                                                                                                                                   | 4151-50-2    |  |
| Ethanaminium, N,N,N-triethyl-, salt with 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-octanesulfonicacid (1:1)                                                                                                                                | 56773-42-3   |  |
| 2-Propanoic acid, 2-((ethyl(pentadecafluoroheptyl)-<br>sulfonyl)amino)ethyl ester                                                                                                                                                                    | 59071-10-2   |  |
| Glycine, N-ethyl-N-[(nonafluorobutyl)sulfonyl]-, potassium salt                                                                                                                                                                                      | 67584-51-4   |  |
| Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt                                                                                                                                                                                   | 67584-52-5   |  |
| Glycine, N-ethyl-N-[(tridecafluorohexyl)sulfonyl]-, potassium salt                                                                                                                                                                                   | 67584-53-6   |  |
| Acrylic acid, 2-[methyl[(nonafluorobutyl) sulfonyl] amino] ethylester                                                                                                                                                                                | 67584-55-8   |  |
| Glycine, N-ethyl-N-[(pentadecafluoroheptyl)sulfonyl]-, potassium salt                                                                                                                                                                                | 67584-62-7   |  |
| Glycine, N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]-, potassium salt                                                                                                                                                                                 | 2991-51-7    |  |
| 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, polymer with 2-<br>propenoic acid and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-<br>methyl-2-propenoate, sodium salt                                                                         | 1878204-24-0 |  |
| Copolymer of 2-(dimethylamino) ethyl methacrylate with 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate, N-oxide, acetate                                                                                                                   | 1440528-04-0 |  |
| 2-Propenoic acid, 2-methyl-, 2-(dimethylamino)ethyl ester, polymer<br>with 1-ethenyl-2-pyrrolidinone and 3,3,4,4,5,5,6,6,7,7,8,8,8-<br>tridecafluorooctyl 2-propenoate, acetate                                                                      | 1334473-84-5 |  |
| Butanedioic acid, 2-methylene-, polymer with 2-hydroxyethyl, 2-<br>methyl-2-propenoate, 2-methyl-2-propenoic acid and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-methyl-2-propenoate,<br>sodium salt                                          | 1345817-52-8 |  |
| Hexane, 1,6-diisocyanato-, homopolymer, $\alpha$ -[1-[[[3-[[3 (dimethylamino)propyl]amino]propyl]amino]carbonyl]-1,2,2,2-tetrafluoroethyl]- $\omega$ -(1,1,2,2,3,3,3-heptafluoropropoxy)poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]]-blocked | 1279108-20-1 |  |
| 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester polymer with 1-<br>ethyenyl-2-pyrrolidinone, 2-propenoic acid and<br>3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-propenoate sodium salt                                                         | 1206450-10-3 |  |
| Diphosphoric acid, polymers with ethoxylated reduced methyl esters                                                                                                                                                                                   | 162492-15-1  |  |



PFAS AND ALTERNATIVES IN FOOD PACKAGING (PAPER AND PAPERBOARD): HAZARD PROFILE

| of reduced polymerized oxidized tetrafluoroethylene                                                                                                                                                                                                                                        | 1314-56-3             |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|
|                                                                                                                                                                                                                                                                                            | 2466-09-3             |         |
| 2-propenoic acid, 2-methyl-, polymer with 2-hydroxyethyl 2-methyl-<br>2-propenoate, α-(1-oxo-2-propen-1-yl)-ω-hydroxypoly(oxy-1,2-<br>ethanediyl) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-<br>propenoate, sodium salt                                                           | 1158951-86-0          |         |
| 2-propenoic acid, 2-hydroxyethyl ester, polymer with $\alpha$ -(1-oxo-2-propen-1-yl)- $\omega$ -hydroxypoly(oxy-1,2-ethanediyl), $\alpha$ -(1-oxo-2-propen-1-yl)- $\omega$ -[(1-oxo-2-propen-1-yl)oxy]poly(oxy-1,2-ethanediyl) and 3,3,4,4,5,5,6,6,7,7,8,8-tridecafluorooctyl 2-propenoate | 1012783-70-8          |         |
| 2-Propenoic acid, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl ester, polymer with $\alpha$ -(1-oxo-2-propen-1-yl)- $\omega$ -hydroxypoly(oxy-1,2-ethanediyl)                                                                                                                              | 68228-00-2            |         |
| 2-propen-1-ol, reaction products with 1,1,1,2,2,3,3,4,4,5,5,6,6-<br>tridecafluoro-6-iodohexane, dehydroiodinated, reaction products with<br>epichlorohydrin and triethylenetetramine                                                                                                       | 464178-94-7           |         |
| Copolymer of perfluorohexylethyl methacrylate, 2-N,N-<br>diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and<br>2,2'-ethylenedioxydiethyl dimethacrylate, acetic acid salt                                                                                                    | 863408-20-2           |         |
| Copolymer of perfluorohexylethyl methacrylate, 2-N,N-<br>diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and<br>2,2'-ethylenedioxydiethyl dimethacrylate, malic acid salt                                                                                                     | 1225273-44-8          |         |
| 2-propen-1-ol, reaction products with pentafluoroiodoethane-<br>tetrafluoroethylene telomer, dehydroiodinated, reaction products with<br>epichlorohydrin and triethylenetetramine                                                                                                          | 464178-90-3           |         |
| Tetrafluoroethylene, oxidized, oligomers, reduced, methyl esters, reduced                                                                                                                                                                                                                  | 88645-29-8            |         |
|                                                                                                                                                                                                                                                                                            | 328389-91-9           |         |
| Fluorinated polyurethane anionic resin prepared by reacting perfluoropolyether diol, isophorone diisocyanate, 2,2-                                                                                                                                                                         | 4098-71-9             |         |
| dimethylolpropionic acid, and triethylamine                                                                                                                                                                                                                                                | 1047217               |         |
|                                                                                                                                                                                                                                                                                            | 121-44-8              |         |
| Hexane, 1,6-diisocyanato-, homopolymer, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol-blocked                                                                                                                                                                                          | 357624-15-8           |         |
| 2-propenoic acid, 2-methyl-, polymer with 2-(diethylamino)ethyl 2-<br>methyl-2-propenoate, 2-propenoic acid and 3,3,4,4,5,5,6,6,7,7,8,8,8-<br>tridecafluorooctyl 2-methyl-2-propenoate, acetate                                                                                            | 1071022-26-8          |         |
| Note: Red shading indicates no data identified and green shading                                                                                                                                                                                                                           | g represents where da | ita was |

| 5-3  |  |  |  |
|------|--|--|--|
| )-3  |  |  |  |
|      |  |  |  |
| 86-0 |  |  |  |
|      |  |  |  |
| 70-8 |  |  |  |
| 70-0 |  |  |  |
|      |  |  |  |
| 0-2  |  |  |  |
|      |  |  |  |
| 94-7 |  |  |  |
|      |  |  |  |
| 20-2 |  |  |  |
|      |  |  |  |
| 44-8 |  |  |  |
|      |  |  |  |
| 00-3 |  |  |  |
| 9-8  |  |  |  |
|      |  |  |  |
| 91-9 |  |  |  |
| -9   |  |  |  |
| 7    |  |  |  |
| -8   |  |  |  |
| 5-8  |  |  |  |
| 5-0  |  |  |  |
| 26-8 |  |  |  |
|      |  |  |  |

Note: Red shading indicates no data identified and green shading represents where data was identified

## ENV/CBC/MONO(2022)2 | 37

# **Non-fluorinated Alternatives**

| Substance Name                                                                                                                                         | CAS             | Authority<br>Classifications | Industry<br>Classifications | HH Hazard<br>Assessments | Environmental<br>Hazard<br>Assessments | Persistence &<br>Bioaccumulati<br>on Assessments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|-----------------------------|--------------------------|----------------------------------------|--------------------------------------------------|
| TopScreenTM formulations                                                                                                                               | Confidential    |                              |                             |                          |                                        |                                                  |
| Natural greaseproof paper (NGP)                                                                                                                        | N/A             |                              |                             |                          |                                        |                                                  |
| Silicone oils (with added preserving agents)                                                                                                           | N/A             |                              |                             |                          |                                        |                                                  |
| Silicone resins                                                                                                                                        | N/A             |                              |                             |                          |                                        |                                                  |
| Silicone elastomers                                                                                                                                    | N/A             |                              |                             |                          |                                        |                                                  |
| Natural and synthetic cellulose fibres bleached or unbleached                                                                                          | N/A             |                              |                             |                          |                                        |                                                  |
| Wood pulp bleached or unbleached                                                                                                                       | N/A             |                              |                             |                          |                                        |                                                  |
| Recycled fibres made from paper or paperboard                                                                                                          | N/A             |                              |                             |                          |                                        |                                                  |
| 2-hydroxy-2-methylpropiophenone                                                                                                                        | 7473-98-5       |                              |                             |                          |                                        |                                                  |
| Siloxanes and Silicones, di-Me, hydrogen-terminated, reaction<br>products with acrylic acid and 2-ethyl-2- [(2-<br>propenyloxy)methyl]-1,3-propanediol | 155419-56-<br>0 |                              |                             |                          |                                        |                                                  |
| Cyclohexane-1,2,4-triyltris(ethylene)                                                                                                                  | 2855-27-8       |                              |                             |                          |                                        |                                                  |
| Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated, reaction products with 2-((3-(trimethoxysilyl)propoxy)methyl)oxirane                     | 102782-94-<br>5 |                              |                             |                          |                                        |                                                  |
| Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated, reaction products with 3-(2-(trimethoxysilyl)ethyl)bicyclo(4.1.0)heptane                 | 917773-10-<br>5 |                              |                             |                          |                                        |                                                  |

Note: Red shading indicates no data identified and green shading represents where data was identified

# Annex C. Hazard Classifications and Assessments of Chemical or Material Alternatives to Long-chain PFAS

This Annex contains the findings of Tasks 1, 2 and 3 and presents them for each alternative. For group entries containing multiple CAS numbers, findings are displayed for each constituent CAS number. Alternatives for which no information was available are not displayed, and data gaps under each Task (i.e. where classifications or published assessments were not identified) are indicated as such for alternatives included in this Annex. Only those authorities listed in Table 2-1 which have published GHS classifications are shown for each alternative. Where multiple industry classifications were available for a country or region, these were combined to represent a worst-case classification. In addition to classifications obtained through industry SDS, the most commonly notified classifications under the EU CLP Regulation are displayed. Human health hazard assessments, environmental hazard assessments, and persistence and bioaccumulation assessments are displayed in separate tables for each substance. Assessments are displayed in chronological descending order. The outcomes of published assessments are displayed for the individual endpoints included in each assessment.

## 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate: CAS 2144-53-8

#### **Authority Classifications**

None found.

## **Industry Classifications (SDS)**

| EU                | Brazil        | China         | Japan         | Korea         | USA           |
|-------------------|---------------|---------------|---------------|---------------|---------------|
| Skin Irrit. 2     | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 |
| Eye Irrit. 2      | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2  | Eye Irrit. 2A |
| STOT RE 2         | STOT SE 3     | -             | STOT SE 3     | STOT SE 3     | -             |
| STOT SE 3         |               |               |               |               |               |
| Notified          |               |               |               |               |               |
| STOT RE 2         |               |               |               |               |               |
| Aquatic Chronic 1 |               |               |               |               |               |

Source: ECHA (2020i; 2020j); Santa Cruz Biotechnology (2015a); TCI (2018a)

# Human Health Hazard Assessments

| Publication               | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                                                                                                                                        |
|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS (2019a)            | Acute toxicity     | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate has low toxicity following oral and dermal exposure. The substance has very low toxicity following inhalation exposure (based on rat studies).                                                                                   |
|                           | Corrosion /        | No evidence of skin irritation has been observed (based on skin irritation studies on rabbits).                                                                                                                                                                                            |
|                           | Irritation         | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is considered to be a slight eye irritant.                                                                                                                                                                                       |
|                           | Sensitisation      | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not considered to be a skin sensitiser                                                                                                                                                                                        |
| Repeated control toxicity |                    | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not considered to be hazardous following repeated short-term or long-term oral exposure.                                                                                                                                      |
|                           |                    | Repeated inhalation exposure to 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate has not caused any serious toxicological effects. Therefore, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not considered to be hazardous following repeated inhalation exposure. |
|                           | Genotoxicity       | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not mutagenic.                                                                                                                                                                                                                |
| Ramboll Environ           | Corrosion /        | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not a significant skin irritant.                                                                                                                                                                                              |
| (2014, 2016)              | Irritation         | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not a significant eye irritant as it causes minimal reversible eye irritation.                                                                                                                                                |
|                           | Sensitisation      | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not a significant skin sensitiser.                                                                                                                                                                                            |
|                           | Genotoxicity       | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not genotoxic based on the weight of evidence.                                                                                                                                                                                |

# **Environmental Hazard Assessments**

| Publication                  | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                  |
|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS (2019c)               | Aquatic toxicity   | Insufficient data is available to classify for aquatic hazards under GHS. 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not considered to be toxic (based on data for PFHxA and PFBA). |
| Ramboll Environ (2014, 2016) | Aquatic toxicity   | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not significantly toxic to aquatic organisms.                                                                                            |
| ECCC (2006)                  | Aquatic toxicity   | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is inherently toxic to aquatic organisms                                                                                                    |

| Publication                  | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                                                                                                                                                                                    |
|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020i) Persistence     |                    | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate does not meet the criteria for being persistent or very persistent specified in REACH Annex XIII.                                                                                                                                                                                       |
|                              |                    | However, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is currently undergoing PBT assessment under the Community Rolling Action Plan (CoRAP) by BAuA. CoRAP prioritises substances for evaluation where there is a concern that the manufacture and/or use of these substances could pose a risk to human health or the environment. |
|                              | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate does not meet the criteria for being bioaccumulative or very bioaccumulative specified in REACH Annex XIII.                                                                                                                                                                             |
|                              |                    | However, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is currently undergoing PBT assessment under the Community Rolling Action Plan (CoRAP) by BAuA. CoRAP prioritises substances for evaluation where there is a concern that the manufacture and/or use of these substances could pose a risk to human health or the environment. |
| METI (2019b)                 | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not readily biodegradable and has low bioconcentration (BCF = 12).                                                                                                                                                                                                                   |
| Ramboll Environ (2014, 2016) | Persistence        | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is unlikely to meet the criteria for persistence specified in Annex D of the Stockholm Convention.                                                                                                                                                                                      |
| (,,,                         | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate does not meet the criteria for bioaccumulation specified in Annex D of the Stockholm Convention.                                                                                                                                                                                        |
| ECCC (2006)                  | Persistence        | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is not persistent                                                                                                                                                                                                                                                                       |
|                              | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate is bioaccumulative.                                                                                                                                                                                                                                                                     |

# 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate: CAS 17527-29-6

# Authority Classifications

None found.

## **Industry Classifications (SDS)**

| EU            | USA                 |
|---------------|---------------------|
| Skin Irrit. 2 | Acute Tox. 4 (oral) |
| Eye Irrit. 2  | Skin Irrit. 2       |
| STOT RE 2     | Eye Irrit. 2A       |
| STOT SE 3     | STOT SE 3           |
| Notified      |                     |
| STOT RE 2     |                     |

Source: ECHA (2020j); Oakwood (2020); Sigma-Aldrich (2020); (TCI, 2018b)

# Human Health Hazard Assessments

| Publication                  | Hazard Assessed           | Conclusions on Human Health Effects                                                                                                                                                                                                  |
|------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ramboll Environ (2014, 2016) | Corrosion /<br>Irritation | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not a significant skin irritant.<br>3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not a significant eye irritant as it causes minimal reversible eye irritation. |
|                              | Sensitisation             | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not a significant skin sensitiser.                                                                                                                                          |
|                              | Sub-chronic<br>toxicity   | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate has been observed to increase liver weights.                                                                                                                                   |
|                              | Genotoxicity              | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not genotoxic (based on lack of effects in bacteria and mammalian cells).                                                                                                   |

# **Environmental Hazard Assessments**

| Publication                  | Hazard<br>Assessed  | Conclusions on Environmental Effects                                                                                                                          |
|------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ramboll Environ (2014, 2016) | Aquatic<br>toxicity | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not significantly toxic to aquatic organisms (based on lack of effects seen in acute toxicity test). |
| ECCC (2006)                  | Aquatic<br>toxicity | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is inherently toxic to aquatic organisms                                                                |

| Publication                  | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                                                                                                                                                                                |
|------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020d) Persistence     |                    | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is considered to meet the criteria for persistence specified in REACH<br>Annex XIII.<br>However, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is currently undergoing PBT assessment under the                                                                                 |
|                              |                    | Community Rolling Action Plan (CoRAP) by BAuA. CoRAP prioritises substances for evaluation where there is a concern that the manufacture and/or use of these substances could pose a risk to human health or the environment.                                                                                                                 |
|                              | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is considered to be non-bioaccumulative.                                                                                                                                                                                                                                                |
|                              |                    | However, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is currently undergoing PBT assessment under the Community Rolling Action Plan (CoRAP) by BAuA. CoRAP prioritises substances for evaluation where there is a concern that the manufacture and/or use of these substances could pose a risk to human health or the environment. |
| Ramboll Environ (2014, 2016) | Persistence        | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is unlikely to meet persistence criteria specified in Annex D of the Stockholm Convention.                                                                                                                                                                                              |
| ()                           | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate does not meet criteria for bioaccumulation specified in Annex D of the Stockholm Convention.                                                                                                                                                                                            |
| METI (2019a)                 | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not readily biodegradable and has low bioconcentration.                                                                                                                                                                                                                              |
| ECCC (2006)                  | Persistence        | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not persistent                                                                                                                                                                                                                                                                       |
|                              | Bioaccumulation    | 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate is not bioaccumulative                                                                                                                                                                                                                                                                  |

# Phosphoric acid ester of ethoxylated perfluoropoly-etherdiol: CAS 200013-65-6

**Authority Classifications** None found.

# **Industry Classifications (SDS)**

| EU           |
|--------------|
| Notified     |
| Eye Irrit. 2 |

Source: ECHA (2020j)

Human Health Hazard Assessments None found.

**Environmental Hazard Assessments** None found.

**Persistence and Bioaccumulation Assessments** None found

#### Perfluoropolyetherdicarbonic acid, ammonium salt: CAS 69991-62-4

# Authority Classifications

None found.

# **Industry Classifications (SDS)**

EU Notified Acute Tox. 4 (oral) Skin Irrit. 2 Eye Dam. 1 STOT RE 1

Source: ECHA (2020j)

Human Health Hazard Assessments None found.

# **Environmental Hazard Assessments**

None found.

#### **Persistence and Bioaccumulation Assessments** None found.

2-Propen-1-ol, reaction products with 1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluoro-6-iodohexane, de-hydroiodinated, reaction products with epichlorohydrin and triethylenetetr-amine with a fluorine content of 54%: CAS 355-43-1

# **Authority Classifications**

Chinese Taipei Eye Irrit. 2A STOT SE 3 Aquatic Chronic 1

# **Industry Classifications (SDS)**

| EU                | USA           |
|-------------------|---------------|
| Skin Irrit. 2     | Skin Irrit. 2 |
| Eye Irrit. 2      | Eye Irrit. 2  |
| STOT SE 3         | STOT SE 3     |
| Aquatic Chronic 4 |               |
| Notified          |               |
| Aquatic Chronic 4 |               |

Source: Alfa-Aesar (2012); Combi-Blocks (2019); ECHA (2020j); Sigma-Aldrich (2019a); TCI (2019a)

#### Human Health Hazard Assessments

None found.

# **Environmental Hazard Assessments**

| Publication               | Hazard Assessed  | Conclusions on Environmental Effects                                   |
|---------------------------|------------------|------------------------------------------------------------------------|
| Environment Agency (2010) | Aquatic toxicity | The substance is considered to meet the criteria for aquatic toxicity. |
| Danish EPA (2001)         | Aquatic toxicity | The substance is predicted to meet the criteria for aquatic toxicity.  |

| Publication   | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                   |
|---------------|-----------------|----------------------------------------------------------------------------------|
| Environment   | Persistence     | The substance is considered to meet the criteria for persistence.                |
| Agency (2010) | Bioaccumulation | The substance is considered to meet the criteria for being very bioaccumulative. |

Reaction product of hexamethylene-1,6-diisocyanate (homopolymer), converted with 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol with a fluorine content of 48%: CAS 647-42-7

Authority Classifications None found.

# **Industry Classifications (SDS)**

| EU                  | Brazil        | Canada        | China         | Japan         | Korea         | Malaysia      | USA           |
|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Acute Tox. 4 (oral) | Flam Liq. 4   | Flam Liq. 4   | Flam Liq. 4   | Flam. Liq. 4  | Flam Liq. 4   | Skin Irrit. 2 | Flam Liq. 4   |
| Skin Irrit. 2       | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Eye Irrit. 2  | Skin Irrit. 2 |
| Eye Irrit. 2        | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2  | Eye Irrit. 2  | STOT SE 3     | Eye Irrit. 2  |
| STOT RE 2           | STOT SE 3     | STOT SE 3     |               | STOT SE 3     | STOT SE 3     |               | STOT SE 3     |
| STOT SE 3           |               |               |               |               |               |               |               |
| Notified            |               |               |               |               |               |               |               |
| Acute Tox. 4 (oral) |               |               |               |               |               |               |               |
| STOT RE 2           |               |               |               |               |               |               |               |
| Skin Irrit. 2       |               |               |               |               |               |               |               |
| Eye Irrit. 2        |               |               |               |               |               |               |               |
| STOT SE 3           |               |               |               |               |               |               |               |

Source: ECHA (2020j); Santa Cruz Biotechnology (2015b); Sigma-Aldirch (2019b); Thermo-Fisher Scientific (2020a)

# Human Health Hazard Assessments

| Publication    | Hazard Assessed        | Conclusions on Human Health Effects                                                                                                                                                                                                                                                                       |
|----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS (2019a) | Acute toxicity         | The substance has low toxicity following oral and dermal exposure.                                                                                                                                                                                                                                        |
|                | Corrosion / Irritation | No evidence of skin irritation has been observed (based on skin irritation studies on rabbits).                                                                                                                                                                                                           |
|                |                        | The substance is considered to be a slight eye irritant (based on studies on rabbits).                                                                                                                                                                                                                    |
|                | Sensitisation          | The substance is not considered to be a skin sensitiser                                                                                                                                                                                                                                                   |
|                | Repeated dose toxicity | The substance is not considered to be hazardous following repeated short-term or long-term oral exposure.<br>Increases in kidney and liver weights were observed but no histological changes were observed.<br>Repeated inhalation exposure to chemicals did not cause any serious toxicological effects. |
|                | Genotoxicity           | The substance is not mutagenic.                                                                                                                                                                                                                                                                           |

|                 | Reproductive and developmental toxicity | The substance is not a reproductive toxicant. No NOAEL was established for reproductive toxicity (based on lack of effects from rat studies). |  |
|-----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ramboll Environ | Corrosion / Irritation                  | The substance is considered to be a slight eye irritant (based on studies on rabbits).                                                        |  |
| (2014, 2016)    | Sensitisation                           | The substance is not a skin sensitiser.                                                                                                       |  |
|                 | Sub-chronic toxicity                    | Effects in liver and blood have been observed in rat studies.                                                                                 |  |
|                 | Genotoxicity                            | The substance is not mutagenic (based on lack of effects in bacteria and mammalian cells).                                                    |  |
|                 |                                         | Evidence for genotoxicity is largely negative.                                                                                                |  |

# **Environmental Hazard Assessments**

| Publication                  | Hazard Assessed  | Conclusions on Environmental Effects                                           |
|------------------------------|------------------|--------------------------------------------------------------------------------|
| NICNAS (2019c)               | Aquatic toxicity | Insufficient data is available to classify for aquatic hazards under GHS.      |
|                              |                  | The substance is not considered to be toxic, based on data for PFHxA and PFBA. |
| Ramboll Environ (2014, 2016) | Aquatic toxicity | The substance is expected to have low toxicity to aquatic organisms.           |
| ECCC (2006)                  | Aquatic toxicity | The substance is inherently toxic to aquatic organisms                         |

| Publication     | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                                                                |
|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ramboll Environ | Persistence        | The substance does not meet persistence criteria specified in Annex D of the Stockholm Convention.                                                                                                                            |
| (2014, 2016)    | Bioaccumulation    | The substance does not meet bioaccumulation criteria specified in Annex D of the Stockholm Convention. The substance is rapidly eliminated in aquatic and mammalian systems and does not bioaccumulate in terrestrial plants. |
| METI (2013)     | Bioaccumulation    | The substance is not highly bioaccumulative and has low bioconcentration (BCF = 58).                                                                                                                                          |
| ECCC (2006)     | Persistence        | The substance is persistent.                                                                                                                                                                                                  |
| . ,             | Bioaccumulation    | The substance is bioaccumulative.                                                                                                                                                                                             |

# N-(2-Hydroxyethyl) perfluorooctyl sulphonamide: CAS 1691-99-2

## **Authority Classifications**

None found.

# **Industry Classifications (SDS)**

| EU                                | Brazil        | Canada        | Japan         | Korea         | USA                   |
|-----------------------------------|---------------|---------------|---------------|---------------|-----------------------|
| Acute Tox. 3 (oral)               | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Skin Irrit. 2 | Acute Tox. 4 (oral)   |
| Acute Tox. 4 (inhal)              | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2  | Acute Tox. 4 (dermal) |
| Carc. 2                           | STOT SE 3     | STOT SE 3     | STOT SE 3     | STOT SE 3     | Acute Tox. 4 (inhal)  |
| Repr. 1B                          |               |               |               |               | Skin Irrit. 2         |
| STOT RE 1                         |               |               |               |               | Eye Irrit. 2A         |
| Aquatic Chronic 2                 |               |               |               |               | STOT SE 3             |
| Notified                          |               |               |               |               |                       |
| Non-hazardous (no classification) |               |               |               |               |                       |

Source: Apollo (2014a); ECHA (2020j); LGC (2020); Santa Cruz Biotechnology (2020); SynQuest (2017)

# Human Health Hazard Assessments

| Publication       | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                           |
|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2016a) | Not specified      | Limited data is available for the substance. The primary health risks are expected to arise from secondary exposure to PFOS, to which the substance is an indirect precursor. |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                                                                                     |
|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2019b) | Not specified      | The primary environmental effects are expected to result from the cumulative release of PFOS into the environment, to which the substance is an indirect precursor.<br>Insufficient data is available to classify the aquatic hazards of the substance according to GHS. |

| Publication | Hazard(s) Assessed | Conclusions on Persistence and Bioaccumulation                                       |
|-------------|--------------------|--------------------------------------------------------------------------------------|
| RIVM (2011) | Persistence        | N-(2-Hydroxyethyl) perfluorooctyl sulphonamide is persistent (P-score of 0.99).      |
|             | Bioaccumulation    | N-(2-Hydroxyethyl) perfluorooctyl sulphonamide is bioaccumulative (B-score of 0.97). |
| ECCC (2006) | Persistence        | N-(2-Hydroxyethyl) perfluorooctyl sulphonamide is persistent.                        |
|             | Bioaccumulation    | N-(2-Hydroxyethyl) perfluorooctyl sulphonamide is bioaccumulative.                   |

# 1-Butanesulfonic acid: CAS 29420-49-3

## **Authority Classifications**

| Australia     |  |  |  |
|---------------|--|--|--|
| Eye Irrit. 2A |  |  |  |

# **Industry Classifications (SDS)**

| EU            | Brazil                            | China         | Japan                             | Korea                             | USA           |
|---------------|-----------------------------------|---------------|-----------------------------------|-----------------------------------|---------------|
| Skin Irrit. 2 | Non-hazardous (no classification) | Skin Irrit. 2 | Non-hazardous (no classification) | Non-hazardous (no classification) | Skin Irrit. 2 |
| Eye Dam. 1    |                                   | Eye Irrit. 2A |                                   |                                   | Eye Irrit. 2A |
| STOT SE 3     |                                   |               |                                   |                                   | STOT SE 3     |
| Notified      |                                   |               |                                   |                                   |               |
| Eye Dam. 1    |                                   |               |                                   |                                   |               |

Source: Apollo (2018a); ECHA (2020j); Santa Cruz Biotechnology (2017a); Sigma-Aldrich (2020b); TCI (2020a)

# Human Health Hazard Assessments

| Publication       | Hazard Assessed        | Conclusions on Human Health Effects                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2019d) | Acute toxicity         | <ul> <li>1-Butanesulfonic acid is not considered to be acutely toxic following oral exposure (based on data from KPFBS) and dermal exposure (based on data from potassium PFBS and PFBSF).</li> <li>1-Butanesulfonic acid is not considered as classifiable as acutely toxic following inhalation exposure, as inhalation effects are only observed at relatively high doses.</li> </ul> |
|                   | Corrosion / Irritation | 1-Butanesulfonic acid is considered an eye irritant.<br>There is a lack of evidence of skin irritation / corrosion effects of 1-Butanesulfonic acid, but they can't be ruled out because of the irritating effects of potassium PFBS, to which 1-Butanesulfonic acid is a direct precursor.                                                                                              |
|                   | Sensitisation          | 1-Butanesulfonic acid is not considered a skin sensitiser (based on negative effects observed for potassium PFBS, to which 1-Butanesulfonic acid is a direct precursor).                                                                                                                                                                                                                 |
|                   | Repeated dose toxicity | 1-Butanesulfonic acid is not considered to cause serious health effects from repeated oral or inhalation exposure, based on the data available.                                                                                                                                                                                                                                          |
|                   | Genotoxicity           | 1-Butanesulfonic acid is not considered to be genotoxic, based on the results from negative in vitro genotoxicity studies.                                                                                                                                                                                                                                                               |

|                  | Reproductive and developmental toxicity     | 1-Butanesulfonic acid is not considered to cause reproductive or developmental toxicity.                                                                                                                                                 |
|------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US EPA<br>(2018) | Thyroid effects                             | The available evidence supports a hazard and the thyroid is considered a potential target organ for PFBS toxicity in humans.                                                                                                             |
|                  | Reproductive and developmental toxicity     | <ul><li>The available evidence supports a development hazard, and the developing offspring is considered a potential target for PFBS toxicity in humans.</li><li>The available evidence for reproductive effects is equivocal.</li></ul> |
|                  | Renal effects                               | The available evidence for reproductive encets is equivocal.<br>The available evidence supports a hazard and indicates the kidney as a target organ of PFBS toxicity.                                                                    |
|                  | Hepatic effects                             | The available evidence for hepatic effects is equivocal.                                                                                                                                                                                 |
|                  | Effects on lipid or lipoprotein homeostasis | The available evidence for effects on lipid or lipoprotein homeostasis is equivocal.                                                                                                                                                     |
|                  | Immune effects                              | The available evidence for immune effects is equivocal                                                                                                                                                                                   |
| NICNAS           | Acute toxicity                              | Potassium PFBS is of low toxicity via the oral and dermal route                                                                                                                                                                          |
| (2005)           | Corrosion / Irritation                      | Potassium PFBS is non-irritating to skin and the eye.                                                                                                                                                                                    |
|                  | Sensitisation                               | There is no evidence that potassium PFBS causes skin sensitisation.                                                                                                                                                                      |
|                  | Repeated dose toxicity                      | Potassium PFBS does not cause serious damage to health by prolonged exposure.                                                                                                                                                            |
|                  | Genotoxicity                                | Potassium PFBS is not mutagenic.                                                                                                                                                                                                         |
|                  | Reproductive and developmental toxicity     | Potassium PFBS is not toxic to reproduction and development.                                                                                                                                                                             |

# **Environmental Hazard Assessments**

| Publication    | Hazard Assessed                  | Conclusions on Environmental Effects                                                                               |
|----------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| NICNAS (2015e) | Aquatic and terrestrial toxicity | 1-Butanesulfonic acid is not considered to have high toxicity to aquatic organisms or bird.                        |
| ECHA (2020e)   | Aquatic toxicity                 | 1-Butanesulfonic acid does not meet the criteria for aquatic toxicity specified in REACH Annex XIII.               |
| ECCC (2006)    | Aquatic toxicity                 | 1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-, potassium salt is not inherently toxic to aquatic organisms. |
| NICNAS (2005)  | Aquatic and terrestrial toxicity | Potassium PFBS has low ecotoxicity and is not toxic to aquatic organisms.                                          |

# **Persistence and Bioaccumulation Assessments**

| Publication | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                               |
|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|
|             | Persistence        | 1-Butanesulfonic acid is persistent (based on the expected non-degradability of PFBS, and the expectation that all chemicals |

| NICNAS       |                 | in this group will release PFBS in the environment).                                                                                                                                              |
|--------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2015e)      | Bioaccumulation | 1-Butanesulfonic acid is not bioaccumulative (based on the available measured BCF values in fish for potassium PFBS, and data which indicate comparatively rapid elimination of PFBS in mammals). |
| ECHA (2020e) | Persistence     | 1-Butanesulfonic acid meets the criteria for being persistent and very persistent specified in REACH Annex XIII.                                                                                  |
|              | Bioaccumulation | 1-Butanesulfonic acid does not meet the criteria for being bioaccumulative or very bioaccumulative specified in REACH Annex XIII.                                                                 |
| ECCC (2006)  | Persistence     | 1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-, potassium salt is persistent.                                                                                                               |
|              | Bioaccumulation | 1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-, potassium salt is not bioaccumulative.                                                                                                      |
| NICNAS       | Persistence     | Potassium PFBS is persistent in the environment (based on non-degradability of PFBS).                                                                                                             |
| (2005)       | Bioaccumulation | The bioaccumulation potential of potassium PFBS is low.                                                                                                                                           |

Acrylic acid, ester with N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-N-(2-hydroxyethyl)-1-octane-sulfonamide: CAS 423-82-5

Authority Classifications None found.

## **Industry Classifications (SDS)**

| EU                | USA                   |
|-------------------|-----------------------|
| Skin Irrit. 2     | Acute Tox. 4 (oral)   |
| Eye Irrit. 2      | Acute Tox. 4 (dermal) |
| STOT SE 3         | Skin Irrit. 2         |
| Notified          | Eye Irrit. 2A         |
| Non-hazardous (no | STOT SE 3             |
| classification)   | Aquatic Acute 2       |
|                   | Aquatic Chronic 2     |
|                   |                       |

Source: Apollo (2018b); ECHA (2020j); SynQuest (2018)

# Human Health Hazard Assessments

| Publication       | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                           |
|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2016a) | Not specified      | Limited data is available for the substance. The primary health risks are expected to arise from secondary exposure to PFOS, to which the substance is an indirect precursor. |

## **Environmental Hazard Assessments**

| Publication    | Hazard Assessed | Conclusions on Environmental Effects                                                                                                                                                                                                                                     |
|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS (2019b) | Not specified   | The primary environmental effects are expected to result from the cumulative release of PFOS into the environment, to which the substance is an indirect precursor.<br>Insufficient data is available to classify the aquatic hazards of the substance according to GHS. |

| Publication               | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                               |
|---------------------------|-----------------|--------------------------------------------------------------------------------------------------------------|
| NICNAS (2019b)            | Persistence     | Insufficient data is available to assess the substance's persistence.                                        |
|                           | Bioaccumulation | Insufficient data is available to assess the substance's bioaccumulation.                                    |
| Environment Canada (2006) | Bioaccumulation | The weight of evidence suggests that PFOS, its salts and precursors (inc. CAS 423-82-5) are bioaccumulative. |

# 2-Propenoic acid, 2-[ethyl[(tridecafluorohexyl)sulfonyl]-amino]ethylester: CAS 1893-52-3

Authority Classifications None found.

#### **Industry Classifications (SDS)** None found.

# Human Health Hazard Assessments

| Publication       | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                                     |
|-------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2015d) | Not specified      | No toxicological data is available for the substance. The primary health risks are expected to arise from secondary exposure to PFSAs, to which the substance is an indirect precursor. |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                                                                                         |
|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2015c) | Not specified      | The primary environmental effects of the substance are expected to result from the cumulative release of $C_5$ to $C_7$ perfluoroalkyl sulfonates into the environment.<br>Insufficient data is available to classify the aquatic hazards of the substance according to GHS. |

| Publication | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                                          |  |
|-------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NICNAS      | Persistence        | Insufficient data is available to assess the substance's persistence. However, it has the potential to breakdown into persistent perfluoroalkyl sulfonates.                                             |  |
| (2015c)     | Bioaccumulation    | Insufficient data is available to assess the substance's bioaccumulation. However, it has the potential to breakdown into perfluoroalkyl sulfonates, which are known to be, or may be, bioaccumulative. |  |
| RIVM (2011) | Persistence        | The substance is persistent (P-score of 0.97).                                                                                                                                                          |  |
|             | Bioaccumulation    | The substance is bioaccumulative (B-score of 0.91).                                                                                                                                                     |  |

# 1-Butanaminium, N,N,N-tributyl-, hexafluorophosphate(1-): CAS 3109-63-5

Authority Classifications None found.

# **Industry Classifications (SDS)**

| EU            | Brazil              | China               | Japan               | Korea               | USA                 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Notified      | Acute Tox. 4 (oral) |
| Skin Irrit. 2 | Skin Irrit. 2       | Skin Corr. 1C       | Skin Irrit. 2       | Skin Irrit. 2       | Skin Corr. 1C       |
| Eye Irrit. 2  | Eye Irrit. 2A       | Eye Dam. 1          | Eye Irrit. 2A       | Eye Irrit. 2        | Eye Dam. 1          |
| STOT SE 3     | STOT SE 3           | -                   | STOT SE 3           | STOT SE 3           | -                   |

Source: ECHA (2020j); TCI (2016; 2020b); Thermo-Fisher Scientific (2021a)

#### Human Health Hazard Assessments

None found.

#### **Environmental Hazard Assessments**

None found.

#### **Persistence and Bioaccumulation Assessments**

None found.

# 1-Octanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro: CAS 4151-50-2

## **Authority Classifications**

None found.

# **Industry Classifications (SDS)**

| EU                    | USA                   |
|-----------------------|-----------------------|
| Acute Tox. 4 (oral)   | Acute Tox. 4 (oral)   |
| Acute Tox. 4 (dermal) | Acute Tox. 4 (dermal) |
| Acute Tox. 4 (inhal)  | Aquatic Acute 2       |
| Skin Irrit. 2         | Aquatic Chronic 2     |
| Eye Irrit. 2          |                       |
| Carc.2                |                       |
| Repr. 1B              |                       |
| STOT SE 3             |                       |
| STOT RE 1             |                       |
| Aquatic Chronic 2     |                       |
| Notified              |                       |
| Acute Tox. 4 (oral)   |                       |
| Acute Tox. 4 (dermal) |                       |
| Aquatic Chronic 2     |                       |

Source: Apollo (2014b); ECHA (2020j); LGC (2018); Sigma-Aldrich (2020c)

## Human Health Hazard Assessments

None found.

# **Environmental Hazard Assessments**

| Environmental Hazard Assessments |                    |                                      |  |  |
|----------------------------------|--------------------|--------------------------------------|--|--|
| Publication                      | Hazard<br>Assessed | Conclusions on Environmental Effects |  |  |

| ECCC   | Aquatic toxicity | It is uncertain whether 1-Octanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro is inherently toxic to |
|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| (2006) |                  | aquatic organisms.                                                                                                            |

| Publication | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                     |  |
|-------------|-----------------|----------------------------------------------------------------------------------------------------|--|
| RIVM (2011) | Persistence     | ne substance is persistent (P-score of 0.93).                                                      |  |
|             | Bioaccumulation | The substance is bioaccumulative (B-score of 0.87).                                                |  |
| ECCC (2006) | Persistence     | -Octanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro is persistent.       |  |
|             | Bioaccumulation | 1-Octanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro is bioaccumulative. |  |

Ethanaminium, N,N,N-triethyl-, salt with 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-octanesulfonicacid (1:1): CAS 56773-42-3

# **Authority Classifications**

| Australia            |
|----------------------|
| Acute Tox. 3 (oral)  |
| Acute Tox. 4 (inhal) |
| Carc. 2              |
| Repr. 1B             |
| Lact.                |
| STOT RE 1            |
|                      |

## **Industry Classifications (SDS)**

| EU                               | Brazil       | Canada       | China        | Japan        | Korea        | USA               |
|----------------------------------|--------------|--------------|--------------|--------------|--------------|-------------------|
| Acute Tox. 3 (oral) Acute Tox. 4 | Acute Tox. 3      |
| (inhal)                          | (oral)       | (oral)       | (oral)       | (oral)       | (oral)       | (oral)            |
| Carc. 2                          | Carc. 2      | Acute Tox. 4      |
| Lact.                            | Repr. 1B     | (inhal)      | (inhal)      | (inhal)      | (inhal)      | (inhal)           |
| STOT RE 1                        | Lact.        | Carc. 2           |
| Aquatic Chronic 3                | STOT RE 1    | Repr. 1B          |
| Notified                         |              | Lact.        | Lact.        | Lact.        | Lact.        | Lact.             |
| Acute Tox. 3 (oral)              |              | STOT RE 1         |
| Acute Tox. 4 (inhal)             |              |              |              |              |              | Aquatic Acute 3   |
| Carc. 2                          |              |              |              |              |              | Aquatic Chronic 3 |
| Repr. 1B                         |              |              |              |              |              |                   |
| Lact.                            |              |              |              |              |              |                   |
| STOT RE 1                        |              |              |              |              |              |                   |

Source: Apollo (2016); ECHA (2020j); Sigma-Aldrich (2014a); SynQuest (2016)

# Human Health Hazard Assessments

| Publication    | Hazard Assessed                         | Conclusions on Human Health Effects                                                                   |
|----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|
| NICNAS (2015f) | Acute toxicity                          | PFOS salts have moderate acute toxicity following oral exposure.                                      |
|                | Reproductive and developmental toxicity | PFOS salts do not have an adverse effect on the reproductive parameters but are toxic to development. |

# **Environmental Hazard Assessments**

| Publication  | Hazard Assessed         | Conclusions on Environmental Effects                                                                             |
|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------|
| ECHA (2020f) | Aquatic toxicity        | The substance meets the aquatic toxicity criteria specified in REACH Annex XIII.                                 |
| NICNAS       | Aquatic and terrestrial | The substances will release PFOS in the environment and this is expected to have long-term toxic effects in many |
| (2015a)      | toxicity                | aquatic and terrestrial organisms.                                                                               |
| ECCC (2006)  | Aquatic toxicity        | The substance is inherently toxic to aquatic organisms.                                                          |

| Publication                                                                                  | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                  |
|----------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020f) Persistence The substance meets the criteria for persistence specified in REACH |                    | The substance meets the criteria for persistence specified in REACH Annex XIII.                                                                                                 |
|                                                                                              | Bioaccumulation    | The substance does not meet criteria for bioaccumulation specified in REACH Annex XIII.                                                                                         |
| NICNAS                                                                                       | Persistence        | The substance is categorised as persistent (based on the non-degradability of PFOS, and the expectation that the substance will release PFOS in the environment).               |
| (2015a)                                                                                      | Bioaccumulation    | The substance is categorised as bioaccumulative (based on the bioaccumulation properties of PFOS, and the expectation that the substance will release PFOS in the environment). |
| ECCC (2006)                                                                                  | Persistence        | The substance is persistent.                                                                                                                                                    |
|                                                                                              | Bioaccumulation    | It is uncertain whether the substance is bioaccumulative.                                                                                                                       |

# 2-Propanoic acid, 2-((ethyl(pentadecafuloroheptyl)-sulfonyl)amino)ethyl ester: CAS 59071-10-2

Authority Classifications None found.

**Industry Classifications (SDS)** None found.

# Human Health Hazard Assessments

| Publication    | Hazard Assessed | Conclusions on Human Health Effects                                                                                                                                                     |
|----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS (2015d) | Not specified   | No toxicological data is available for the substance. The primary health risks are expected to arise from secondary exposure to PFSAs, to which the substance is an indirect precursor. |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                                                                                         |
|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2015c) | Not specified      | The primary environmental effects of the substance are expected to result from the cumulative release of $C_5$ to $C_7$ perfluoroalkyl sulfonates into the environment.<br>Insufficient data is available to classify the aquatic hazards of the substance according to GHS. |

| Publication | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                                          |  |
|-------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NICNAS      | Persistence        | Insufficient data is available to assess the substance's persistence. However, it has the potential to breakdown into persistent perfluoroalkyl sulfonates.                                             |  |
| (2015c)     | Bioaccumulation    | Insufficient data is available to assess the substance's bioaccumulation. However, it has the potential to breakdown into perfluoroalkyl sulfonates, which are known to be, or may be, bioaccumulative. |  |
| RIVM (2011) | Persistence        | The substance is persistent (P-score of 0.99).                                                                                                                                                          |  |
|             | Bioaccumulation    | The substance is bioaccumulative (B-score of 0.94).                                                                                                                                                     |  |

# Glycine, N-ethyl-N-[(nonafluorobutyl)sulfonyl]-, potassium salt: CAS 67584-51-4

Authority Classifications None found.

**Industry Classifications (SDS)** None found.

# Human Health Hazard Assessments

| Publication       | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                                                                 |  |
|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NICNAS<br>(2015g) | Not specified      | No hazard data is available for the substance. The primary health risks for the substance are expected to be caused by secondary exposure to PFBS.<br>Classification of the substance under GHS is not recommended. |  |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                |  |
|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| NICNAS<br>(2015b) | Aquatic toxicity   | The primary environmental effects of the substance are expected to result from the cumulative release of PFBS into the environment. |  |
|                   |                    | Insufficient data is available to classify the aquatic hazards of the substance according to GHS.                                   |  |
| ECCC (2006)       | Aquatic toxicity   | Glycine, N-ethyl-N-[(nonafluorobutyl)sulfonyl]-, potassium salt is not inherently toxic to aquatic organisms.                       |  |

# **Persistence and Bioaccumulation Assessments**

| Publication    | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                          |
|----------------|-----------------|-----------------------------------------------------------------------------------------|
| NICNAS (2015b) | Persistence     | Insufficient data is available to classify for persistence.                             |
|                | Bioaccumulation | Insufficient data is available to classify for bioaccumulation.                         |
| ECCC (2006)    | Persistence     | Glycine, N-ethyl-N-[(nonafluorobutyl)sulfonyl]-, potassium salt is persistent.          |
|                | Bioaccumulation | Glycine, N-ethyl-N-[(nonafluorobutyl)sulfonyl]-, potassium salt is not bioaccumulative. |

# Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt: CAS 67584-52-5

Authority Classifications None found. Industry Classifications (SDS) None found.

# Human Health Hazard Assessments

| Publication       | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                                                                  |  |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NICNAS<br>(2015d) | Not specified      | No hazard data is available for the substance. The primary health risks for the substance are expected to be caused by secondary exposure to PFSAs.<br>Classification of the substance under GHS is not recommended. |  |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                                                                                         |
|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2015c) | Aquatic toxicity   | The primary environmental effects of the substance are expected to result from the cumulative release of $C_5$ to $C_7$ perfluoroalkyl sulfonates into the environment.<br>Insufficient data is available to classify the aquatic hazards of the substance according to GHS. |
| ECCC (2006)       | Aquatic toxicity   | Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt is not inherently toxic to aquatic organisms.                                                                                                                                                             |

# **Persistence and Bioaccumulation Assessments**

| Publication                                                                                                       | Hazard Assessed                                                                               | Conclusions on Persistence and Bioaccumulation                                                           |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| NICNAS (2015c)                                                                                                    | Persistence                                                                                   | Insufficient data is available to classify for persistence.                                              |  |
|                                                                                                                   | Bioaccumulation                                                                               | Insufficient data is available to classify for bioaccumulation.                                          |  |
| RIVM (2011) Persistence Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt is persistent (P-score |                                                                                               | Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt is persistent (P-score of 0.92).      |  |
|                                                                                                                   | Bioaccumulation                                                                               | Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt is bioaccumulative (B-score of 0.92). |  |
| ECCC (2006)                                                                                                       | Persistence Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt is persistent. |                                                                                                          |  |
|                                                                                                                   | Bioaccumulation                                                                               | Glycine, N-ethyl-N-[(undecafluoropentyl)sulfonyl]-, potassium salt is not bioaccumulative.               |  |

# Glycine, N-ethyl-N-[(tridecafluorohexyl)sulfonyl]-, potassium salt: CAS 67584-53-6

Authority Classifications None found. Industry Classifications (SDS) None found.

# Human Health Hazard Assessments

| Publication       | Hazard Assessed | Conclusions on Human Health Effects                                                                                                                                                                                  |  |
|-------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NICNAS<br>(2015d) | Not specified   | No hazard data is available for the substance. The primary health risks for the substance are expected to be caused by secondary exposure to PFSAs.<br>Classification of the substance under GHS is not recommended. |  |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed  | Conclusions on Environmental Effects                                                                                                                                                                                                                                                                                   |
|-------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2015c) | Aquatic<br>toxicity | <ul> <li>The primary environmental effects of the substance are expected to result from the cumulative release of C<sub>5</sub> to C<sub>7</sub> perfluoroalkyl sulfonates into the environment.</li> <li>Insufficient data is available to classify the aquatic hazards of the substance according to GHS.</li> </ul> |
| ECCC (2006)       | Aquatic<br>toxicity | Glycine, N-ethyl-N-[(tridecafluorohexyl)sulfonyl]-, potassium salt is inherently toxic to aquatic organisms.                                                                                                                                                                                                           |

# **Persistence and Bioaccumulation Assessments**

| Publication                                                                                          | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                             |
|------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------|
| NICNAS (2015c) Persistence Insufficient data is available to classify for pe                         |                 | Insufficient data is available to classify for persistence.                                |
|                                                                                                      | Bioaccumulation | Insufficient data is available to classify for bioaccumulation.                            |
| RIVM (2011)                                                                                          | Persistence     | The substance is persistent (P-score of 0.96).                                             |
|                                                                                                      | Bioaccumulation | The substance is bioaccumulative (B-score of 0.97).                                        |
| ECCC (2006) Persistence Glycine, N-ethyl-N-[(tridecafluorohexyl)sulfonyl]-, potassium salt is persis |                 | Glycine, N-ethyl-N-[(tridecafluorohexyl)sulfonyl]-, potassium salt is persistent.          |
|                                                                                                      | Bioaccumulation | Glycine, N-ethyl-N-[(tridecafluorohexyl)sulfonyl]-, potassium salt is not bioaccumulative. |

# Acrylic acid, 2-[methyl[(nonafluorobutyl) sulfonyl] amino] ethylester: CAS 67584-55-8

# Authority Classifications

None found.

## **Industry Classifications (SDS)**

EU Notified Skin Sens. 1B Aquatic Chronic 2

Source: ECHA (2020j)

#### Human Health Hazard Assessments None found.

# **Environmental Hazard Assessments**

| Publication    | Hazard<br>Assessed  | Conclusions on Environmental Effects                                                                                                                                                                       |
|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAuA<br>(2019) | Aquatic<br>toxicity | The substance does not fulfil the T criteria specified in REACH Annex XIII for short-term toxicity, and there is not sufficient data to assess whether the T criteria is fulfilled for long-term toxicity. |

| Publication | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                         |
|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAuA (2019) | Persistence     | The substance is expected to be very persistent.                                                                                                       |
|             | Bioaccumulation | The substance is not considered to be bioaccumulative for aquatic organisms. The substance has low bioaccumulation potential in terrestrial organisms. |

# Glycine, N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]-, potassium salt: CAS 2991-51-7

Authority Classifications None found.

**Industry Classifications (SDS)** None found.

# Human Health Hazard Assessments

| Publication       | Hazard<br>Assessed | Conclusions on Human Health Effects                                                                                                                                           |
|-------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2016a) | Not specified      | Limited data is available for the substance. The primary health risks are expected to arise from secondary exposure to PFOS, to which the substance is an indirect precursor. |

# **Environmental Hazard Assessments**

| Publication       | Hazard<br>Assessed  | Conclusions on Environmental Effects                                                                                                                                                                                                                                     |
|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS<br>(2019b) | Not specified       | The primary environmental effects are expected to result from the cumulative release of PFOS into the environment, to which the substance is an indirect precursor.<br>Insufficient data is available to classify the aquatic hazards of the substance according to GHS. |
| ECCC (2006)       | Aquatic<br>toxicity | Glycine, N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]-, potassium salt is not inherently toxic to aquatic organisms.                                                                                                                                                       |

# **Persistence and Bioaccumulation Assessments**

| Publication | Hazard Assessed                                                                                             | Conclusions on Persistence and Bioaccumulation                                      |  |
|-------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| ECCC (2006) | Persistence                                                                                                 | Glycine, N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]-, potassium salt is persistent. |  |
|             | Bioaccumulation Glycine, N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]-, potassium salt is not bioaccumulative |                                                                                     |  |

# Glycine, N-ethyl-N-[(pentadecafluoroheptyl)sulfonyl]-, potassium salt: CAS 67584-62-7

#### Authority Classifications None found.

# Industry Classifications (SDS)

None found.

# Human Health Hazard Assessments

| Publication    | Hazard Assessed | Conclusions on Human Health Effects                                                                                                                                                                                     |  |  |  |
|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NICNAS (2015d) | Not specified   | No hazard data is available for the substance. The primary health risks for the substance are expected to be caused<br>by secondary exposure to PFSAs.<br>Classification of the substance under GHS is not recommended. |  |  |  |

# **Environmental Hazard Assessments**

| Publication    | Hazard Assessed  | Conclusions on Environmental Effects                                                                                                                                    |
|----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NICNAS (2015c) | Aquatic toxicity | The primary environmental effects of the substance are expected to result from the cumulative release of $C_5$ to $C_7$ perfluoroalkyl sulfonates into the environment. |
|                |                  | Insufficient data is available to classify the aquatic hazards of the substance according to GHS.                                                                       |
| ECCC (2006)    | Aquatic toxicity | Glycine, N-ethyl-N-[(pentadecafluoroheptyl)sulfonyl]-, potassium salt is inherently toxic to aquatic organisms.                                                         |

| Publication    | Publication         Hazard Assessed         Conclusions on Persistence and Bioaccumulation |                                                                 |  |
|----------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| NICNAS (2015c) | Persistence Insufficient data is available to classify for persistence.                    |                                                                 |  |
|                | Bioaccumulation                                                                            | Insufficient data is available to classify for bioaccumulation. |  |
| RIVM (2011)    | Persistence                                                                                | The substance is persistent (P-score of 0.98).                  |  |

|             | Bioaccumulation The substance is bioaccumulative (B-score of 0.98). |                                                                                               |
|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| ECCC (2006) | Persistence                                                         | Glycine, N-ethyl-N-[(pentadecafluoroheptyl)sulfonyl]-, potassium salt is persistent.          |
|             |                                                                     | Glycine, N-ethyl-N-[(pentadecafluoroheptyl)sulfonyl]-, potassium salt is not bioaccumulative. |

# Copolymer of 2-(dimethylamino) ethyl methacrylate with 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl methacrylate, N-oxide, acetate CAS 1440528-04-0

Authority Classifications None found.

**Industry Classifications (SDS)** None found.

# Human Health Hazard Assessments

| Publication Hazard Assessed |               | Conclusions on Human Health Effects                                  |  |  |  |
|-----------------------------|---------------|----------------------------------------------------------------------|--|--|--|
| ECCC (2021)                 | Not specified | The substance not likely to pose a significant risk to human health. |  |  |  |
|                             |               |                                                                      |  |  |  |

# **Environmental Hazard Assessments**

| Publication | Hazard Assessed  | Conclusions on Environmental Effects                                 |
|-------------|------------------|----------------------------------------------------------------------|
| ECCC (2021) | Aquatic toxicity | The substance is expected to have low toxicity in aquatic organisms. |

| Publication | Hazard Assessed | Conclusions on Persistence and Bioaccumulation |
|-------------|-----------------|------------------------------------------------|
| ECCC (2021) | Bioaccumulation | The substance is not expected to bioaccumulate |

## Diphosphoric acid, polymers with ethoxylated reduced methyl esters of reduced polymerized oxidized tetrafluoroethylene

# CAS 162492-15-1

Authority Classifications None found.

# **Industry Classifications (SDS)**

| EU                | Canada            | China             | Japan             | Korea             | Malaysia          | USA               |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Non-hazardous (no |
| classification)   |

Source: Alfa-Aesar (2021); ECHA (2020j)

#### Human Health Hazard Assessments

None found.

#### **Environmental Hazard Assessments**

None found.

#### **Persistence and Bioaccumulation Assessments**

None found.

# CAS 1314-56-3

# **Authority Classifications**

| EU            | Australia     | Canada       | China         | Japan                | Korea                | New Zealand   | Thailand                          |
|---------------|---------------|--------------|---------------|----------------------|----------------------|---------------|-----------------------------------|
| Harmonised    | Skin Corr. 1A | Skin Corr. 1 | Skin Corr. 1A | Acute Tox. 2 (inhal) | Acute Tox. 2 (inhal) | Skin Corr. 1B | Non-hazardous (no classification) |
| Skin Corr. 1A |               | Eye Dam. 1   | Eye Dam. 1    | Skin Corr. 1         | Skin Corr. 1         | Eye Dam. 1    |                                   |
|               |               |              |               | Eye Dam. 1           |                      |               |                                   |

# **Industry Classifications (SDS)**

| EU                                             | China                                               | Japan                                               | Korea                                               | USA                                                 |
|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| <i>Notified</i><br>Skin Corr. 1A<br>Eye Dam. 1 | Acute Tox. 2 (inhal)<br>Skin Corr. 1A<br>Eve Dam. 1 | Acute Tox. 2 (inhal)<br>Skin Corr. 1A<br>Eve Dam. 1 | Acute Tox. 2 (inhal)<br>Skin Corr. 1A<br>Eve Dam. 1 | Acute Tox. 2 (inhal)<br>Skin Corr. 1A<br>Eve Dam. 1 |
| ·                                              |                                                     |                                                     |                                                     | STOT SE 3                                           |

Source: ECHA (2020j); Merck (2019); Santa Cruz Biotechnology (2018a)

## Human Health Hazard Assessments

None found.

# **Environmental Hazard Assessments**

| Publication | Hazard Assessed  | Conclusions on Environmental Effects                           |
|-------------|------------------|----------------------------------------------------------------|
| ECCC (2006) | Aquatic toxicity | Phosphorus oxide is not inherently toxic to aquatic organisms. |

| Publication | Hazard Assessed | Conclusions on Persistence and Bioaccumulation |  |
|-------------|-----------------|------------------------------------------------|--|
| ECCC (2006) | Persistence     | Phosphorus oxide is persistent.                |  |
|             | Bioaccumulation | Phosphorus oxide is not bioaccumulative.       |  |

#### CAS 2466-09-3

#### **Authority Classifications**

Australia Acute Tox. 4 (inhal) Skin Corr. 1

### **Industry Classifications (SDS)**

| EU                                   | China                                              | Canada                                             | USA                                                          | Japan                                              | Korea                                              |
|--------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Acute Tox. 4 (oral)<br>Skin Corr. 1B | Acute Tox. 4 (oral)<br>Skin Corr. 1B<br>Eye Dam. 1 | Acute Tox. 4 (oral)<br>Skin Corr. 1B<br>Eye Dam. 1 | Acute Tox. 4 (oral)<br>Acute Tox. 2 (Inhal)<br>Skin Corr. 1A | Acute Tox. 4 (oral)<br>Skin Corr. 1B<br>Eye Dam. 1 | Acute Tox. 4 (oral)<br>Skin Corr. 1B<br>Eye Dam. 1 |
| <i>Notified</i><br>Skin Corr. 1B     |                                                    | -                                                  | Eye Dam. 1                                                   | -                                                  | -                                                  |

Source: ECHA (2020j); Santa Cruz Biotechnology (2019); Sigma-Aldrich (2020d)

### Human Health Hazard Assessments

| Human Health                | Human Health Hazard Assessments |                                                                                                                                                              |  |  |  |
|-----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Publication Hazard Assessed |                                 | Conclusions on Human Health Effects                                                                                                                          |  |  |  |
| NICNAS<br>(2016b)           | Acute toxicity                  | Expected to have low acute oral toxicity, low to moderate acute dermal toxicity, and moderate to high acute inhalation toxicity.                             |  |  |  |
|                             | Corrosion /<br>Irritation       | Expected to be corrosive and, depending on the concentration, irritating to the respiratory tract, eye, and skin, based on information from phosphoric acid. |  |  |  |
|                             | Sensitisation                   | No data is available                                                                                                                                         |  |  |  |

#### **Environmental Hazard Assessments**

None found.

2-propen-1-ol, reaction products with pentafluoroiodoethane-tetrafluoroethylene telomer, dehydroiodinated, reaction products with epichlorohydrin and triethylenetetramine: CAS 464178-90-3

Authority Classifications None found.

**Industry Classifications (SDS)** None found.

### Human Health Hazard Assessments

| Publication | Hazard Assessed                         | Conclusions on Persistence and Bioaccumulation                                                                                  |
|-------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| ECCC        | Acute toxicity                          | The substance is expected to show low acute oral toxicity.                                                                      |
| (2015)      | Sub-chronic toxicity                    | The substance is likely to display moderate sub-chronic oral toxicity, with possible effects on the thyroid, liver, and kidney. |
|             | Corrosion / Irritation                  | The substance is expected to show low skin and eye irritation potential.                                                        |
|             | Reproductive and developmental toxicity | The substance is expected to show low reproductive and developmental toxicity.                                                  |

#### **Environmental Hazard Assessments**

| Publication | Hazard Assessed  | Conclusions on Persistence and Bioaccumulation                                           |  |
|-------------|------------------|------------------------------------------------------------------------------------------|--|
| ECCC (2015) | Aquatic toxicity | The substance is not considered to be toxic or cause adverse effects to the environment. |  |

### **Persistence and Bioaccumulation Assessments**

| Publication | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                                                         |
|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| METI        | Persistence     | The substance is not readily biodegradable.                                                                                            |
| (2019c)     | Bioaccumulation | The substance has low bioconcentration.                                                                                                |
| ECCC (2015) | Persistence     | The substance is expected to degrade and release PFCA precursors which are expected to further degrade to the highly persistent PFCAs. |

Tetrafluoroethylene, oxidized, oligomers, reduced, methyl esters, reduced: CAS 88645-29-8

#### **Authority Classifications**

EU *Harmonised* Non-hazardous (no classification)

**Industry Classifications (SDS)** None found.

Human Health Hazard Assessments None found.

**Environmental Hazard Assessments** None found.

Propanoic acid, 3-hydroxy-2-(hydroxymethyl)-2-methyl-, polymers with 5-isocyanato-1-(isocyanatomethyl)-1,3,3trimethylcyclohexane and reduced Me esters of reduced polymd. oxidized tetrafluoroethylene, compds. with triethylamine: CAS 328389-91-9

Authority Classifications None found.

**Industry Classifications (SDS)** None found.

#### Human Health Hazard Assessments

| Publication   | Hazard Assessed                                    | Conclusions on Human Health Effects    |
|---------------|----------------------------------------------------|----------------------------------------|
| NICNAS (2013) | Acute toxicity The substance is not acutely toxic. |                                        |
|               | Corrosion / Irritation                             | The substance is non-irritating.       |
|               | Sensitisation                                      | There is no evidence of sensitisation. |
|               | Genotoxicity                                       | The substance is non-mutagenic.        |

# **Environmental Hazard Assessments**

| Publication   | Hazard Assessed  | Conclusions on Environmental Effects                                   |
|---------------|------------------|------------------------------------------------------------------------|
| NICNAS (2013) | Aquatic toxicity | The substance may be harmful to fish, aquatic invertebrates and algae. |

#### **Persistence and Bioaccumulation Assessments**

| Publication   | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                      |  |
|---------------|-----------------|---------------------------------------------------------------------|--|
| NICNAS (2013) | Persistence     | The substance is expected to degrade via biotic or abiotic pathways |  |
|               | Bioaccumulation | The substance is not expected to bioaccumulate                      |  |

# Isophorone diisocyanate: CAS 4098-71-9

# **Authority Classifications**

| EU                   | Australia            | Canada               | China                | Japan                | Korea                | Thailand              |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|
| Harmonised           | Acute Tox. 3 (inhal) | Acute Tox. 1 (inhal) | Acute Tox. 3 (inhal) | Acute Tox. 1 (inhal) | Acute Tox. 3 (inhal) | Acute Tox. 4 (oral)   |
| Acute Tox. 3 (inhal) | Skin Irrit. 2        | Skin Irrit. 2        | Skin Irrit. 2        | Skin Corr. 1         | Skin Irrit. 2        | Acute Tox. 4 (dermal) |
| Skin Irrit. 2        | Eye Irrit. 2         | Eye Irrit. 2         | Eye Irrit. 2         | Eye Irrit. 2A        | Eye Irrit. 2         | Acute Tox. 3 (inhal)  |
| Eye Irrit. 2         | Skin Sens. 1         | Skin Sens. 1         | Skin Sens. 1         | Resp. Sens. 1        | Skin Sens. 1         | Skin Corr. 1A         |
| Skin Sens. 1         | Resp. Sens. 1        | Resp. Sens. 1        | Resp. Sens. 1        | Skin Sens. 1         | Resp. Sens. 1        | Eye Dam. 1            |
| Resp. Sens. 1        | STOT SE 3            | STOT SE 3            | STOT SE 3            | STOT SE 1            | STOT SE 3            | Skin Sens. 1          |
| STOT SE 3            | Aquatic Chronic 2    |                      | Aquatic Acute 2      | STOT RE 1            | STOT RE 1            | STOT SE 3             |
| Aquatic Chronic 2    |                      |                      | Aquatic Chronic 2    | Aquatic Acute 3      | Aquatic Chronic 3    | STOT RE 1             |
|                      |                      |                      |                      | Aquatic Chronic 3    |                      | Aquatic Acute 3       |
|                      |                      |                      |                      |                      |                      | Aquatic Chronic 3     |

### **Industry Classifications (SDS)**

| EU                   | China                 | Japan                 | Korea                 | USA                   |
|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Acute Tox. 1 (inhal) | Acute Tox. 4 (oral)   |
| Skin Corr. 1C        | Acute Tox. 4 (dermal) |
| Eye Irrit. 2         | Acute Tox. 3 (inhal)  | Acute Tox. 3 (inhal)  | Acute Tox. 3 (inhal)  | Acute Tox. 1 (inhal)  |
| Skin Sens. 1         | Skin Corr. 1          | Skin Corr. 1          | Skin Corr. 1          | Skin Corr. 1C         |
| Resp. Sens. 1        | Eye Irrit. 2          | Eye Irrit. 2A         | Eye Irrit. 2          | Eye Dam. 1            |
| STOT SE 3            | Skin Sens. 1          | Skin Sens. 1          | Skin Sens. 1          | Skin Sens. 1          |
| Aquatic Chronic 2    | Resp Sens. 1          | Resp Sens. 1          | Resp Sens. 1          | Resp. Sens 1          |
|                      | Aquatic Acute 3       | STOT SE 1             | STOT SE 3             | STOT SE 3             |
| Notified             | Aquatic Chronic 2     | STOT RE 1             | STOT RE 1             | STOT RE 1             |
| Skin Irrit. 2        | _                     | Aquatic Acute 3       | Aquatic Chronic 2     | Aquatic Acute 3       |
| Eye Irrit. 2         |                       | Aquatic Chronic 3     |                       | Aquatic Chronic 2     |
| Skin Sens. 1         |                       |                       |                       |                       |
| Acute Tox. 1 (inhal) |                       |                       |                       |                       |
| STOT SE 3            |                       |                       |                       |                       |
| Resp. Sens. 1        |                       |                       |                       |                       |
| Aquatic Chronic 2    |                       |                       |                       |                       |

| Acute Tox. 1 (inhal) |  |  |
|----------------------|--|--|
| Skin Corr. 1C        |  |  |
| Skin Sens. 1         |  |  |
| Resp. Sens. 1        |  |  |
| Aquatic Chronic 2    |  |  |

Source: ECHA (2020j); Sigma-Aldrich (2020e); TCI (2013); Thermo-Fisher Scientific (2021b)

#### Human Health Hazard Assessments

| Publication    | Hazard Assessed                | Conclusions on Human Health Effects                                                                                   |  |
|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| OECD<br>(2012) | Acute toxicity                 | Isophorone diisocyanate is acutely toxic following inhalation exposure, with effects mainly on the respiratory tract. |  |
|                |                                | Isophorone diisocyanate has low acute oral toxicity (based on data from rat studies).                                 |  |
|                | Corrosion / Irritation         | Isophorone diisocyanate is corrosive to skin and causes eye damage (based on data from rabbit studies).               |  |
|                | Sensitisation                  | Isophorone diisocyanate is a skin sensitiser.                                                                         |  |
|                |                                | Isophorone diisocyanate is predicted to be a respiratory tract sensitizer because it is a diisocyanate.               |  |
|                | Genotoxicity                   | Isophorone diisocyanate is not considered to be genotoxic (based on in vitro studies).                                |  |
|                | Reproductive and developmental | Isophorone diisocyanate does not exhibit adverse reproductive or developmental effects (based on animal               |  |
|                | toxicity                       | studies).                                                                                                             |  |

# **Environmental Hazard Assessments**

| Publication                      | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                     |
|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020h)                     | Aquatic toxicity   | Isophorone diisocyanate does not meet the aquatic toxicity criteria specified in REACH Annex XIII.                                                                                                       |
| ECCC and Health<br>Canada (2019) | Aquatic toxicity   | Isophorone diisocyanate has moderate toxicity to aquatic (based on a reactive mode of action and a moderate potential to cause adverse effects in aquatic foodwebs given its bioaccumulation potential). |
| OECD (2012)                      | Aquatic toxicity   | Isophorone diisocyanate has properties which indicate acute aquatic toxicity to invertebrates.                                                                                                           |
| ECCC (2006)                      | Aquatic toxicity   | Isophorone diisocyanate is not inherently toxic to aquatic organisms.                                                                                                                                    |

## **Environmental Hazard Assessments**

| Publication                      | Hazard<br>Assessed | Conclusions on Environmental Effects                                                                                                                                                                     |
|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020h)                     | Aquatic toxicity   | Isophorone diisocyanate does not meet the aquatic toxicity criteria specified in REACH Annex XIII.                                                                                                       |
| ECCC and Health<br>Canada (2019) | Aquatic toxicity   | Isophorone diisocyanate has moderate toxicity to aquatic (based on a reactive mode of action and a moderate potential to cause adverse effects in aquatic foodwebs given its bioaccumulation potential). |
| OECD (2012)                      | Aquatic toxicity   | Isophorone diisocyanate has properties which indicate acute aquatic toxicity to invertebrates.                                                                                                           |
| ECCC (2006)                      | Aquatic toxicity   | Isophorone diisocyanate is not inherently toxic to aquatic organisms.                                                                                                                                    |

| Publication             | Hazard Assessed | Conclusions on Persistence and Bioaccumulation             |
|-------------------------|-----------------|------------------------------------------------------------|
| ECHA (2020h)            | Persistence     | Isophorone diisocyanate is very persistent.                |
|                         | Bioaccumulation | Isophorone diisocyanate is not bioaccumulative.            |
| METI (2019a)            | Persistence     | Isophorone diisocyanate is not readily biodegradable.      |
|                         | Bioaccumulation | Isophorone diisocyanate has low bioconcentration.          |
| OECD (2012)             | Bioaccumulation | Isophorone diisocyanate has low bioaccumulation potential. |
| ECCC (2006) Persistence |                 | Isophorone diisocyanate is persistent.                     |
|                         | Bioaccumulation | Isophorone diisocyanate is not bioaccumulative.            |

### 2,2-Bis(hydroxymethyl)propionic acid: CAS 4767-03-7

#### **Authority Classifications**

| Chinese Taipei |
|----------------|
| Eye Irrit. 2A  |
| STOT SE 3      |

#### **Industry Classifications (SDS)**

| EU                                                                | Brazil                                            | Canada                                            | China                                | Japan                                             | Korea                                            | USA                                                                |
|-------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|
| Acute Tox. 4 (oral)<br>Eye Irrit. 2<br>Skin Irrit. 2<br>STOT SE 3 | Acute Tox. 4 (oral)<br>Eye Irrit. 2A<br>STOT SE 3 | Acute Tox. 4 (oral)<br>Eye Irrit. 2A<br>STOT SE 3 | Acute Tox. 4 (oral)<br>Eye Irrit. 2A | Acute Tox. 4 (oral)<br>Eye Irrit. 2A<br>STOT SE 3 | Acute Tox. 4 (oral)<br>Eye Irrit. 2<br>STOT SE 3 | Acute Tox. 4 (oral)<br>Skin Irrit. 2<br>Eye Irrit. 2A<br>STOT SE 3 |
| <i>Notified</i><br>Eye Irrit. 2<br>STOT SE 3                      |                                                   |                                                   |                                      |                                                   |                                                  |                                                                    |

Source: ECHA (2020j); Santa Cruz Biotechnology (2018b); Sigma-Aldrich (2020f); TCI (2019b); Thermo-Fisher Scientific (2017)

#### Human Health Hazard Assessments

None found.

#### **Environmental Hazard Assessments**

| Publication Hazard Assessed Conclusions on Environmental Effects |                  |                                                                                                                 |
|------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|
| ECHA (2020c)                                                     | Aquatic toxicity | 2,2-Bis(hydroxymethyl)propionic acid does not meet the aquatic toxicity criteria specified in REACH Annex XIII. |
| ECCC (2006)                                                      | Aquatic toxicity | 2,2-Bis(hydroxymethyl)propionic acid is not inherently toxic to aquatic organisms.                              |

| Publication  | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                                   |
|--------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020c) | Persistence     | 2,2-Bis(hydroxymethyl)propionic acid is readily biodegradable and does not meet the criteria for being persistent or very persistent as specified in REACH Annex XIII.           |
|              | Bioaccumulation | 2,2-Bis(hydroxymethyl)propionic acid is readily biodegradable and does not meet the criteria for being bioaccumulative or very bioaccumulative as specified in REACH Annex XIII. |
| ECCC (2006)  | Persistence     | 2,2-Bis(hydroxymethyl)propionic acid is not persistent.                                                                                                                          |
|              | Bioaccumulation | 2,2-Bis(hydroxymethyl)propionic acid is not bioaccumulative.                                                                                                                     |

# Triethylamine: CAS 121-44-8

# **Authority Classifications**

| EU                                                  | Australia                                        | Canada                                              | China                                                | Japan                                               | Korea                                               | New Zealand                                          | Thailand                                             |
|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Harmonised                                          | Flam. Liq. 2                                     | Flam. Liq. 2                                        | Flam. Liq. 2                                         | Flam. Liq. 2                                        | Flam. Liq. 2                                        | Flam. Liq. 2                                         | Flam. Liq. 2                                         |
| Flam. Liq. 2<br>Acute Tox. 4<br>(oral)              | Acute Tox. 4<br>(oral)<br>Acute Tox. 3           | Acute Tox. 4<br>(oral)<br>Acute Tox. 3              | Acute Tox. 4<br>(oral)<br>Acute Tox. 4               | Acute Tox. 4<br>(oral)<br>Acute Tox. 3              | Acute Tox. 4<br>(oral)<br>Acute Tox. 3              | Acute Tox. 4<br>(oral)<br>Acute Tox. 3               | Acute Tox. 4<br>(oral)<br>Acute Tox. 3               |
| Acute Tox. 4<br>(dermal)<br>Acute Tox. 4<br>(inhal) | (dermal)<br>Acute Tox. 3<br>(inhal)<br>STOT SE 3 | (dermal)<br>Acute Tox. 3<br>(inhal)<br>Skin Corr. 1 | (dermal)<br>Acute Tox. 4<br>(inhal)<br>Skin Corr. 1A | (dermal)<br>Acute Tox. 4<br>(inhal)<br>Skin Corr. 1 | (dermal)<br>Acute Tox. 3<br>(inhal)<br>Skin Corr. 1 | (dermal)<br>Acute Tox. 4<br>(inhal)<br>Skin Corr. 1B | (dermal)<br>Acute Tox. 3<br>(inhal)<br>Skin Corr. 1A |
| Skin Corr. 1A                                       | Skin Corr. 1A                                    | Eye Dam. 1                                          | Eye Dam. 1<br>Aquatic Acute 3                        | Eye Dam. 1<br>STOT SE 1<br>STOT RE 2                |                                                     | Eye Dam. 1<br>Aquatic Chronic<br>4                   | Eye Dam. 1<br>STOT SE 1<br>STOT RE 1                 |
|                                                     |                                                  |                                                     |                                                      | Aquatic Acute 2<br>Aquatic Chronic<br>3             |                                                     |                                                      | Aquatic Acute 2<br>Aquatic Chronic<br>2              |

### **Industry Classifications (SDS)**

| EU                    | USA                   |
|-----------------------|-----------------------|
| Flam. Liq. 2          | Flam. Liq. 2          |
| Acute Tox. 4 (oral)   | Acute Tox. 4 (oral)   |
| Acute Tox. 3 (dermal) | Acute Tox. 3 (dermal) |
| Acute Tox. 3 (inhal)  | Acute Tox. 3 (inhal)  |
| Skin Corr. 1A         | Skin Corr. 1A         |
| Eye Dam. 1            | Eye Dam. 1            |
| STOT SE 3             | STOT SE 1             |
|                       | STOT RE 1             |
| Notified              | Aquatic Acute 2       |
| Flam. Liq. 2          | Aquatic Chronic 2     |
| Acute Tox. 4 (oral)   | _                     |
| Acute Tox. 3 (dermal) |                       |
| Acute Tox. 3 (inhal)  |                       |
| Skin Corr. 1A         |                       |
| Eye Dam. 1            |                       |
| STOT SE 3             |                       |

Source: ECHA (2020j); Sigma-Aldrich (2020g); Thermo-Fisher Scientific (2020b)

# Human Health Hazard Assessments

| Publication | Hazard Assessed        | Conclusions on Human Health Effects                                                                                                                                        |
|-------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2019) | Acute toxicity         | Triethylamine was agreed to be classified as Acute Tox 4 for acute oral toxicity.                                                                                          |
|             |                        | Triethylamine was assigned an Acute Toxicity Estimate (ATE) value of 500 mg/kg bw.                                                                                         |
|             |                        | Triethylamine was agreed to be classified as Acute Tox 3 for acute dermal toxicity.                                                                                        |
|             |                        | Triethylamine was assigned an Acute Toxicity Estimate (ATE) value of 420 mg/kg bw.                                                                                         |
|             |                        | Triethylamine was agreed to be classified as Acute Tox 3 for acute inhalation toxicity. Triethylamine was assigned an Acute Toxicity Estimate (ATE) value of 7.2 mg/kg bw. |
|             | Corrosion / Irritation | Triethylamine has shown severe effects in the eyes of rabbits. It is therefore an eye corrosive and is classified as<br>Eye Dam. 1                                         |
| OECD        | Acute toxicity         | Triethylamine has acute dermal toxicity.                                                                                                                                   |
| (2012a)     | Corrosion / Irritation | Triethylamine is corrosive to skin and eyes.                                                                                                                               |
|             | Repeated dose toxicity | Triethylamine is expected to have repeated dose toxicity with effects on the respiratory and gastrointestinal tract.                                                       |

|                  | Genotoxicity                            | Triethylamine is not considered to be genotoxic.                                                       |
|------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|
|                  | Reproductive and developmental toxicity | Triethylamine may cause developmental effects by the oral route.                                       |
| US EPA<br>(1991) | Chronic toxicity                        | Triethylamine has chronic effects on the respiratory system and has a RfC of 0.007 mg/m <sup>3</sup> . |

# **Environmental Hazard Assessments**

| Publication  | Hazard Assessed  | Conclusions on Environmental Effects                                                     |
|--------------|------------------|------------------------------------------------------------------------------------------|
| ECHA (2020g) | Aquatic toxicity | Triethylamine does not meet the aquatic toxicity criteria specified in REACH Annex XIII. |
| OECD (2012a) | Aquatic toxicity | Triethylamine has properties indicating acute aquatic toxicity.                          |
| ECCC (2006)  | Aquatic toxicity | Triethylamine is not inherently toxic to aquatic organisms.                              |

| Publication     | Hazard<br>Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                                            |
|-----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA            | Persistence        | Triethylamine does not meet the criteria for being persistent or very persistent as specified in REACH Annex XIII.                                                        |
| (2020g)         | Bioaccumulation    | Triethylamine has negligible bioaccumulation potential and does not meet the criteria for being bioaccumulative or very bioaccumulative as specified in REACH Annex XIII. |
| OECD<br>(2012a) | Bioaccumulation    | Triethylamine is not expected to bioaccumulate.                                                                                                                           |
| ECCC (2006)     | Persistence        | Triethylamine is not persistent.                                                                                                                                          |
|                 | Bioaccumulation    | Triethylamine is not bioaccumulative.                                                                                                                                     |
| METI (1990)     | Bioaccumulation    | Triethylamine was determined to be non or not highly bioaccumulative.                                                                                                     |

2-propenoic acid, 2-methyl-, polymer with 2-(diethylamino)ethyl 2-methyl-2-propenoate, 2-propenoic acid and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl 2-methyl-2-propenoate, acetate: CAS 1071022-26-8

Authority Classifications None found.

**Industry Classifications (SDS)** 

EU Acute Tox. 3 (inhalation)

Source: Fila Industria Chimica (2017)

Human Health Hazard Assessments None found.

**Environmental Hazard Assessments** None found.

#### ENV/CBC/MONO(2022)2 | 87

# Annex C.1 : Hazard Classifications and Assessments of Non-Fluorinated PFAS Alternatives

### Silicone oils (with added preserving agents)

# Authority Classifications

None found.

### **Industry Classifications (SDS)**

| EU                   | USA                  |
|----------------------|----------------------|
| STOT SE 3            | Aquatic Acute Tox. 2 |
| Aquatic Chronic Tox. | Aquatic Chronic Tox. |
| - 2                  | 2                    |

Source: Electrolube (2017a); Sigma-Aldrich (2014b)

# Human Health Hazard Assessments

None found.

#### **Environmental Hazard Assessments**

None found.

### Silicone Resins

# Authority Classifications

None found.

### **Industry Classifications (SDS)**

EU Not classified (non-

hazardous)

Source: Electrolube (2017b)

#### Human Health Hazard Assessments None found.

#### **Environmental Hazard Assessments** None found.

ENV/CBC/MONO(2022)2 | 89

#### Silicone Elastomer

Authority Classifications None found.

### **Industry Classifications (SDS)**

US Not classified (non-hazardous)

Source: Dow (2019)

#### Human Health Hazard Assessments None found.

**Environmental Hazard Assessments** None found.

#### Natural and synthetic cellulose fibres bleached or unbleached: CAS N/A

#### **Authority Classifications**

None found.

### **Industry Classifications (SDS)**

| EU                                | USA                               |
|-----------------------------------|-----------------------------------|
| Non-hazardous (no classification) | Non-hazardous (no classification) |

Source: Cellucomp (2018); Fisher Scientific (2014); Merck (2020)

#### Human Health Hazard Assessments

None found.

# Environmental Hazard Assessments

None found.

#### Wood pulp bleached or unbleached: CAS N/A

**Authority Classifications** None found.

**Industry Classifications (SDS)** 

| EU                                | USA                               |
|-----------------------------------|-----------------------------------|
| Non-hazardous (no classification) | Non-hazardous (no classification) |

Source: International Paper (2017); Resolute Forest Products (2015); Verso (2015); WestRock (2019)

#### Human Health Hazard Assessments

| Publication   | Hazard Assessed | Conclusions on Human Health Effects                                                                          |
|---------------|-----------------|--------------------------------------------------------------------------------------------------------------|
| US EPA (1990) | Carcinogenicity | There is a significant lifetime cancer risk due to concentrations of dioxin in paper food contact materials. |

#### **Environmental Hazard Assessments**

None found.

#### Recycled fibres made from paper or paperboard: CAS N/A

### **Authority Classifications**

None found.

### **Industry Classifications (SDS)**

| EU                                | USA                               |
|-----------------------------------|-----------------------------------|
| Non-hazardous (no classification) | Non-hazardous (no classification) |

Source: Monarch Green Inc (n.d.); Sundeala (2018)

#### Human Health Hazard Assessments

None found.

#### **Environmental Hazard Assessments** None found.

### 2-Hydroxy-2-methylpropiophenone: CAS 7473-98-5

### **Authority Classifications**

| New Zealand         | Chinese Taipei      |
|---------------------|---------------------|
| Acute Tox. 4 (oral) | Acute Tox. 4 (oral) |
| Aquatic Acute 1     |                     |
| Aquatic Chronic 1   |                     |

### **Industry Classifications (SDS)**

| EU                                                                                        | China               | Japan               | Korea               | USA                 |
|-------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|
| Acute Tox. 4 (oral)<br>Acute Tox. 4 (dermal)<br>Acute Tox. 4 (inhal)<br>Aquatic Chronic 3 | Acute Tox. 4 (oral) |
| <i>Notified</i><br>Acute Tox. 4 (oral)                                                    |                     |                     |                     |                     |
| Aquatic Chronic 3                                                                         |                     |                     |                     |                     |

Source: Apollo (2015); ECHA (2020j); Santa Cruz Biotechnology (2017b); Sigma-Aldrich (2015)

#### Human Health Hazard Assessments

None found.

### **Environmental Hazard Assessments**

| Publication  | Hazard Assessed  | Conclusions on Environmental Effects                                                                       |  |
|--------------|------------------|------------------------------------------------------------------------------------------------------------|--|
| ECHA (2020b) | Aquatic toxicity | 2-Hydroxy-2-methylpropiophenone does not meet the aquatic toxicity criteria specified in REACH Annex XIII. |  |
| ECCC (2006)  | Aquatic toxicity | 2-Hydroxy-2-methylpropiophenone is not inherently toxic to aquatic organisms.                              |  |

| Publication  | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                 |  |
|--------------|-----------------|------------------------------------------------------------------------------------------------|--|
| ECHA (2020b) | Persistence     | Hydroxy-2-methylpropiophenone is not expected to be persistent or very persistent.             |  |
|              | Bioaccumulation | 2-Hydroxy-2-methylpropiophenone is not expected to be bioaccumulative or very bioaccumulative. |  |
| ECCC (2006)  | Persistence     | 2-Hydroxy-2-methylpropiophenone is not persistent.                                             |  |
|              | Bioaccumulation | 2-Hydroxy-2-methylpropiophenone is not bioaccumulative.                                        |  |

Siloxanes and Silicones, di-Me, hydrogen-terminated, reaction products with acrylic acid and 2-ethyl-2- [(2-propenyloxy)methyl]-1,3-propanediol: CAS 155419-56-0

Authority Classifications None found.

**Industry Classifications (SDS)** 

EU Notified Non-hazardous (no classification)

Source: ECHA (2020i)

Human Health Hazard Assessments None found.

**Environmental Hazard Assessments** None found.

**Persistence and Bioaccumulation Assessments** None found.

### Cyclohexane-1,2,4-triyltris(ethylene): CAS 2855-27-8

### **Authority Classifications**

None found.

### **Industry Classifications (SDS)**

| EU                | Brazil        | China         | Japan         | Korea         | USA           |
|-------------------|---------------|---------------|---------------|---------------|---------------|
| Flam. Liq. 3      | Flam. Liq. 4  |
| Asp. Tox. 1       | Skin Irrit. 2 |
| Skin Irrit. 2     | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2A | Eye Irrit. 2  | Eye Irrit. 2A |
| Eye Irrit. 2      | STOT SE 3     |               | STOT SE 3     | STOT SE 3     | STOT SE 3     |
| Skin Sens. 1      |               |               |               |               |               |
| Carc. 1A          |               |               |               |               |               |
| Muta. 1B          |               |               |               |               |               |
| STOT SE 3         |               |               |               |               |               |
| Aquatic Acute 1   |               |               |               |               |               |
| Aquatic Chronic 1 |               |               |               |               |               |
| Notified          |               |               |               |               |               |
| Flam. Liq. 3      |               |               |               |               |               |
| Asp. Tox. 1       |               |               |               |               |               |
| Skin Irrit. 2     |               |               |               |               |               |
| Skin Sens. 1      |               |               |               |               |               |
| Carc. 1A          |               |               |               |               |               |
| Muta. 1B          |               |               |               |               |               |
| STOT SE 3         |               |               |               |               |               |
| Aquatic Acute 1   |               |               |               |               |               |
| Aquatic Chronic 1 |               |               |               |               |               |

Source: ECHA (2020j); Santa Cruz Biotechnology (2017c); TCI (2018c)

#### Human Health Hazard Assessments

None found.

# **Environmental Hazard Assessments**

| Publication | Hazard Assessed  | Conclusions on Environmental Effects                                                     |
|-------------|------------------|------------------------------------------------------------------------------------------|
| ECHA (2020) | Aquatic toxicity | The substance does not meet the aquatic toxicity criteria specified in REACH Annex XIII. |

| Publication  | Hazard Assessed | Conclusions on Persistence and Bioaccumulation                                                                                                            |
|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ECHA (2020a) | Persistence     | Based on the available information, a definitive conclusion on persistency cannot be drawn.                                                               |
|              | Bioaccumulation | The substance is considered to potentially fulfil the bioaccumulation criteria, but not the very bioaccumulative criteria, specified in REACH Annex XIII. |